
Warped Register File: A Power Efficient Register File for GPGPUs

Mohammad Abdel-Majeed, Murali Annavaram
Electrical Engineering Department, University of Southern California

Los Angeles, CA 90089
{abdelmaj, annavara}@usc.edu

Abstract

General purpose graphics processing units (GPGPUs)
have the ability to execute hundreds of concurrent threads.
To support massive parallelism GPGPUs provide a very
large register file, even larger than a cache, to hold the state
of each thread. As technology scales, the leakage power
consumption of the SRAM cells is getting worse making the
register file static power consumption a major concern. As
the supply voltage scaling slows, dynamic power consump-
tion of a register file is not reducing. These concerns are
particularly acute in GPGPUs due to their large register
file size. This paper presents two techniques to reduce the
GPGPU register file power consumption. By exploiting the
unique software execution model of GPGPUs, we propose
a tri-modal register access control unit to reduce the leak-
age power. This unit first turns off any unallocated register,
and places all allocated registers into drowsy state immedi-
ately after each access. The average inter-access distance
to a register is 789 cycles in GPGPUs. Hence, aggressively
moving a register into drowsy state immediately after each
access results in 90% reduction in leakage power with neg-
ligible performance impact. To reduce dynamic power this
paper proposes an active mask aware activity gating unit
that avoids charging bit lines and word lines of registers
associated with all inactive threads within a warp. Due to
insufficient parallelism and branch divergence warps have
many inactive threads. Hence, registers associated with in-
active threads can be identified precisely using the active
mask. By combining the two techniques we show that the
power consumption of the register file can be reduced by
69% on average.

1 Introduction

General purpose graphics processing units (GPGPUs)
use an execution model called SIMT (Single Instruction
Multiple Threads) [4] that allows many of the process-
ing elements to share a single program counter to execute

the same instruction but on different data elements concur-
rently. Concurrent thread execution with fast thread switch-
ing is supported by a large register file, even larger than a
cache, that holds much of the execution state of each thread.
For example, in GTX480 GPU there are a total of 16 stream-
ing multiprocessors (SMs) and each SM has 32 cores. To
enable 32 concurrent threads, each SM has a 128KB regis-
ter file. However, each SM has only 16KB L1 cache and
48KB shared memory. Thus the total size of the register
file across all SMs is 2MB, while the shared L1 cache size
is only 512 KB. The inversion in sizing between cache and
register file, compared to the traditional memory hierarchy
in the CPU, is a critical microarchitectural feature that is
needed for supporting massively parallel execution.

Operating a large register file consumes significant dy-
namic and leakage power. This problem will get even worse
in the future: the reduction in supply voltage has slowed in
recent years thereby limiting dynamic power scaling ability
of a transistor. The reduction in threshold voltage is leading
to a significant increase in the leakage power. As a result,
GPGPU register file power consumption is receiving signif-
icant attention from the industry and the academic commu-
nity [13][29].

There has been prior research in reducing the register file
power consumption in traditional CPUs [16] [19] [25]. The
SIMT execution model, however, provides GPGPU-specific
opportunities to further reduce register file power. For in-
stance, our analysis (details presented later) shows that once
a register is accessed (read/write) by a thread that register
is not accessed again for several hundreds of cycles. The
long inter-access delay can be exploited to save leakage
power by placing registers in drowsy state immediately after
each access. Second, the utilization of SIMT cores within
a GPGPU vary dynamically due to the varying amount of
parallelism and branch divergence problems in the appli-
cations. While underutilization of cores is a concern even
in chip multiprocessors (CMPs) the magnitude of underuti-
lization in SIMT cores is much higher due to the massive
amount of available resources on a GPGPU. As GPGPUs
are increasingly deployed in wide range of application do-



mains, the parallelism variance in application activity will
only grow. Hence, dynamically disabling access to inactive
registers can save significant amount of dynamic power.

In this paper we take advantage of the GPGPU-specific
microarchitectural features and application knowledge to
introduce two techniques to reduce the leakage and the dy-
namic power of the GPGPU register file.

Tri-modal register file: We exploit the property that the
inter-access cycle count to registers is in the order of hun-
dreds of cycles across a wide range of GPGPU workloads.
We propose and evaluate a tri-modal register file that can
switch between ON, OFF and drowsy states to reduce the
leakage power consumption.

Active mask aware gating: We exploit the dynamic
variance in the available parallelism within a warp to dis-
able bitline and wordline activity of unused registers. We
rely on GPGPU’s built-in active mask feature to identify in-
active threads within a warp well ahead of scheduling an
instruction. Thus using the active mask we disable unnec-
essary register activity to reduce the dynamic power.

By combining the above two techniques we show that
the power consumption of the register file can be reduced
by 69% on average.

The paper is organized as follows: Section 2 describes
architectural features of GPGPUs that we exploit in this
work. Section 3 presents some motivational data regarding
GPGPU workload characteristics and how CMOS transistor
scaling trend can impact register file power consumption in
future. Section 4 discusses the proposed tri-modal register
file design. Section 5 discusses the proposed active mask
aware register gating technique. Our results are discussed
in Section 6. We describe related work in Section 7 and we
conclude in Section 8

2 GPGPU Background

GPGPU Microarchitecture: The GPGPU microarchi-
tecture varies per vendor; in our paper we used the Fermi[4]
microarchitecture as our baseline GPGPU model. Below is
a brief description of the microarchitecture blocks that are
relevant to this work.

Each SM in Fermi has 32 processing elements (PEs), 16
load store units(LD/ST), and 4 special function units(SFUs)
used for special arithmetic computations like sine, cosine
and square root. Each SM has its own thread scheduler and
register file. In addition, every SM has its own 64KB shared
memory that is accessible by all the threads running on the
same SM.

The finer grained scheduled unit of work in GPGPUs is
called a warp. A warp is a group of 32 threads executing
the same instruction with different input operand values.
Multiple warps within the same program are grouped to-
gether into one cooperative thread array (CTA). Every CTA

is assigned to an SM for execution. In order to improve
the efficiency and the utilization of the SMs, more than one
CTA can be scheduled per SM. When some warps from one
CTA are stalled due to long latency operation, warps from
other CTAs can be scheduled to keep the SM fully utilized.
The maximum number of concurrent CTAs is limited by the
SM resources. For example, the number of required regis-
ters by each thread, the number of threads per SM and the
available shared memory are some hardware constraints that
may limit the maximum possible scheduled CTAs.

Figure 1 shows three critical pipeline stages within an
SM that are relevant to this work: namely, a two-level in-
struction scheduling stage, a register file access stage and
the execution stage. The two microarchitectural blocks that
are proposed for register file power savings are highlighted
in the figure: a tri-modal control unit, coordinated mask
aware control unit. These two blocks will be described in
detail in section 4 and 5.

Two-Level Thread Scheduler: GPUs have hundreds of
PEs and thousands of software threads that can be mapped
to these PEs. Such concurrency in GPGPUs enables them to
hide long latency events, like cache miss events, by simply
switching from a ready warp to a waiting warp. While there
are different thread schedulers proposed, in this work we
assume the presence of a state-of-the-art two-level sched-
uler [13]. In a two-level scheduler all warps that are waiting
on long latency events are placed in a pending warp queue.
When all the input operands for a warp are ready (i.e. avail-
able in the register file) then that warp is moved to the active
warp queue by a level one scheduler. The active warp queue
holds all the warps whose input operands are available in
register file. Then the level two scheduler only issues an
instruction from the active warp queue. This approach sim-
plifies warp scheduling since any warp in the active warp
queue will find its inputs in the register file without addi-
tional waiting.

A separate scoreboard unit (not shown in the figure) is
responsible for solving any RAW and WAW hazards be-
tween the threads within the same warp. The scoreboard
will reserve the destination registers till the result is ready
and written back. Each warp has an entry in the scoreboard.
This entry has the list of the reserved registers for each warp
which indicate that these registers will be updated by in-
structions executing from that warp. Before issuing any
warp, the level two scheduler will check the scoreboard for
the dependencies. If it turns out that the operands are ready
and can be read from the register file, then the warp will be
assigned a collector unit and the access requests will be sent
to register file.

Register File: GPGPUs have a large multi-banked reg-
ister file that is used to manage the execution context of
the warps scheduled on an SM by the two-level scheduler.
For instance, in Fermi each SM has a 128KB register file.



An instruction warp is scheduled for execution only when
the input registers are ready. Even if the register inputs are
ready, accessing a large multi-banked register file can take
multiple cycles before the instruction can be executed. In
order to reduce the latency penalty associated with register
reads, an instruction warp that is ready to be scheduled will
be assigned a collector unit. The collector unit stores the
warp id, the instruction opcode, the source operand register
number, the source operand value and a ready bit for each
operand. Note that all input operands are already available
in the register file when an instruction is scheduled for exe-
cution. Hence the ready bit in a collector unit is simply used
to inform the scheduler when the register read operation is
complete. Thus the purpose of the collector unit is to spread
out accesses to the register file to avoid bank collisions be-
tween different warp requests.

When all the operands values are read from the register
file, as indicated by the ready bit, the instruction will be
issued to the execution stage. Whenever the instruction is
issued, the collector unit will be freed and the scheduler can
assign a different instruction to that collector unit. To avoid
structural hazards, Fermi has 16 collector units: six units are
assigned for the warps that will be scheduled for execution
on PEs, eight are assigned to SFU-bound warps, and two
are allocated for memory instructions.

Traditionally register files in GPGPUs are very
wide [23]; a single entry in a register file is 128 bytes wide
and contains 32 32-bit operands. Hence one register en-
try is able to provide the input operand values for all the
32 threads within the same warp. To reduce the access la-
tency of a large register file, it is divided into multiple single
ported banks. While there are multiple possible organiza-
tions of a banked register file, the most common approach
is to distribute the registers associated with a warp across
multiple banks. For instance, two registers R0 and R1 used
by the same warp may be placed in different banks. This
organization allows multiple registers to be read by each in-
struction in a warp from across multiple banks. Thus each
bank needs only be single ported, which reduces the power
and design costs.

Each warp has its own set of registers indexed by the
warp id. For example, R1 used by the threads in warp 0
is different from R1 used by the threads executing in other
warps. It is likely that registers used by different warps can
be assigned to the same bank. Hence, the banked register
file organization may lead to some collisions between re-
quests from different warps when they are mapped to the
same bank. The collector unit can handle the bank colli-
sions by acting as a buffer for register reads. In this paper
we assume the base register file is 128KB and it is orga-
nized into 16 banks and each register is 128 bytes wide. In
Section 5.1 we discuss alternative register file implementa-
tions and the applicability of our proposed solutions to those

designs.

Figure 1. GPGPU core pipeline

3 Opportunities for Register File Power Sav-
ings

In order to show GPGPU-specific power saving oppor-
tunities in register files, in this section we present results
from our experiments characterizing several GPGPU work-
loads. We used benchmarks from NVIDIA Computing
SDK[3], Rodinia Benchmark suite [21], and Parboil Bench-
mark suite[5] . The list of benchmarks used in this study are
listed in Column 1 of Table 1. The workload characteriza-
tion results are obtained by running the benchmark suites
using GPGPU-Sim v3.02[8].

Register Allocation at Compile Time: We extracted
the number of registers used by the compiler for different
benchmark kernels using the ” -ptxas-options=-v” in the
nvcc compilation flags. In Table 1 the last column shows the
percentage of the total available registers that are allocated
by the compiler for benchmark execution. On average, 46%
of the register file is never even allocated for executing a
program. Given the vast number of registers available in
a GPGPU compilers simply cannot find enough demand to
allocate all available registers for most applications. An un-
allocated register can be power gated at the beginning of
the program execution without worrying about waking up
that register. This is just one example of a GPGPU-specific
opportunity to reduce register file leakage power.

Register Inter-access Distance: In the next characteri-
zation experiment we focus only on the registers allocated
by the compiler for a program execution. We measured the
number of cycles elapsed between two accesses to the same
register. Figure 2 shows the average inter-access cycle count
for the allocated registers for several benchmarks.To elim-
inate the skew generated by a few very low utilized regis-
ters,the results shown in Figure 2 exclude the register ac-
cesses with an inter-access cycles count of more than 3000
cycles. Most benchmarks have an inter-access cycles count



Benchmarks concurrent Allocated
CTAs register %

Cutcp 8 62.5%
blackscholes 8 50%

mri-q 6 57%
sgemm 5 53%

Pathfinder 6 43%
streamcluster 2 31.3%

Backprop 5 52%
dct8*8 8 37.5%

nn 8 3.9%
hotspot 3 62.7%

heartwall 2 78.3%
nw 8 9.4%
bfs 3 33.3%
lbm 7 82%
sad 8 43%

Table 1. Workloads’ Registers Requirements

in the order of hundreds of cycles. On average, once a reg-
ister is accessed in a cycle its next access will be 789 cycles
later.

When a warp instruction is executed it is unlikely that
the same warp is scheduled for execution in the next cycle
by the two-level warp scheduler. The only time a warp is
scheduled in two consecutive cycles is when no other warp
is ready in the active warp queue and the current warp’s next
instruction is ready for execution. In all other cases, there is
a delay between two consecutive scheduling cycles for any
warp, which results in large inter-access delay for a given
register. This large inter-access delay provides additional
leakage power savings opportunities by using drowsy-cache
approach to put a register to drowsy state immediately fol-
lowing the current access.

Underutilization of Warps: As mentioned earlier, the
minimum unit of work that can be scheduled on a GPU is
called a warp. Each warp consists of 32 threads executing
the same instruction (PC) in a lock-step manner. A fully uti-
lized warp has 32 active threads executing one instruction at
a time. Figure 3 shows the breakdown of the number of ac-
tive threads for different benchmarks. Each bar in the graph
is divided into 32 group. The top most component of a bar
labeled 32 corresponds to the amount of time a warp has 32
active threads compared to the total application execution
time. Similarly, the bottom most component labeled 1 cor-
responds to the amount of time a warp has only one active
thread. We grouped the benchmarks based on active threads
count into three categories : Category 1 has the benchmarks
where all the warps have 32 active threads throughout the
entire benchmark execution. Category 2 has the bench-
marks that have utilization levels between 90%-99%. Cat-
egory 3 has the benchmarks that have utilization levels be-

low 90%.The data shows that only four benchmarks are in
Category 1 indicating that many benchmarks rarely utilize
all 32 threads. Throughout the rest of this paper, we orga-
nized our benchmarks into three categories: in all the fig-
ures(tables) the left most(upper) group presents Category
1 benchmarks, the group in the middle presents Category
2 benchmarks and the right most(lower) group represents
Category 3 benchmarks.

The number of active threads within each warp can be
less than 32 for two reasons: First, the benchmark itself may
not have enough threads to fill all the warps with 32 threads.
The inherent limitation in the amount of available paral-
lelism in a benchmark has not been a significant concern for
purely GPU-oriented workloads. But as GPGPUs are used
for more general purpose computing the parallelism limi-
tation is becoming a concern. For example, nn benchmark
has only 16 active threads in all scheduled warps. Second,
if a branch instruction is encountered during the execution,
then some of the threads will diverge to the taken path and
the rest will diverge to the not-taken path. As a result, the
warp will be scheduled in two phases. In the first phase the
threads in the taken path will execute and all the threads
in the not-taken path will be idle. In the following phase
all threads in the not-taken path execute while the threads
in the taken path idle. The GPGPU scheduler uses the ac-
tive mask, a 32-bit vector, that shows the state of the active
threads within the scheduled warp in that cycle. If the ac-
tive mask bit for a thread is zero then that thread will not be
active during that cycle.

Even though many warps have fewer than 32 threads,
each warp reads all 32 register operands from the regis-
ter file, which wastes dynamic power. Hence, using ac-
tive mask to reduce register file activity can reduce dynamic
power.

Impact of Register Usage on Power:The data from the
characterization experiments showed that in many applica-
tions the compiler cannot even use all the available registers
and hence many registers are left unallocated. Even when
a register is allocated the distance between two consecutive
accesses to the same register is around 789 cycles. Thus
vast majority of the GPGPU registers are in idle state for
long periods. Despite the fact that registers are not accessed,
these registers still burn leakage power.

In order to quantify the leakage current effect on the to-
tal register file power consumption, we performed a circuit
level simulation on a 6T SRAM cells built using 90, 65,and
32 nm technologies. We used the technology files from the
predictive models[1]. The leakage current for each SRAM
cell is shown in Table 2. The leakage current is measured
by measuring the total current drawn from the Vdd when the
SRAM cell is in the standby mode(BL,BLB =vdd , WL=0,
Data=0, DataB=vdd). The second column shows the sup-
ply voltage, the third column quantifies the leakage current



cutcp
Mri-q

sgemm
blackschoes

backprop
pathfinder

dct8*8
streamcluster

hotspot
heartwall

nw
nn

lbm
sad

bfs
avg

0

500

1000

1500

2000

2500

572 647 623 655

407 438

819

316

797

1073 1118

292

1122

2000

951
789

C
yc

le
 c

ou
nt

Figure 2. Registers Inter-access Cycle Count

cutcp
Mri-q

sgemm
BlackScholes

backprop
pathfinder

DCT8*8
streamcluster

hotspot
hearwall

nw
nn

lbm
sad

bfs
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00% 32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17

16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Category 2 Category 3Category 1

Figure 3. Warp Utilization Breakdown

of a single SRAM cell and the fourth column quantifies the
leakage power of an 8kB register file bank calculated using
the technique proposed by [20] . As shown, the Leakage
current nearly doubled as the devices are scaled from 90nm
to 32nm.

Technology VDD Leakage Bank Leakage DRV
(V) (nA) (mW) (mV)

90nm 1.2 14.6 2.9 120
65nm 1.1 22.8 3.5 145
32nm .9 26.08 5.6 220

Table 2. SRAM Leakage Current and DRV
Scaling Trend

Static Noise Margin (SNM): As technology scales
SNM degrades. As a result, the minimum data retention
voltage(DRV) should increase. We measured the DRV for
the 6T SRAM cells scaled from 90nm to 32 nm. Table 2
fifth column shows the ideal DRV values for 90nm, 65nm,
and 32nm[1]. The retention voltage necessary to keep the
data alive in an SRAM cell has increased from 120mV to
220mV.

4 Reducing Register file Leakage Power

Given the opportunities presented in Section 3 we now
present our leakage power reduction technique and the re-
quired circuit and micro-architecture level support.

Turning OFF Unallocated Registers: Our analysis
showed that many registers in GPGPUs are not even allo-
cated for program execution. The first step is to identify all
the unallocated registers by analyzing the compiled code.
This is a simple static code analysis that can be done on the
application binary. We then turn off the unallocated regis-
ters completely at the start of the application execution. The
microarchitectural support necessary to turn off the GPGPU
registers is described later.

Drowsing Allocated Registers: The register inter-
access cycle count shown in Figure 2 indicates that there are
opportunities to further save on leakage power by exploit-
ing the long idle times between two consecutive accesses to
the same register. While turning off the register means zero
leakage current, the content of the register is lost. Since
threads use registers to maintain the context it will not be
possible to just turn off any allocated registers, even if the



inter-access delay is long. Hence, we use drowsy mode op-
eration [12] to put the registers into drowsy state. Drowsy
state incurs less leakage saving but the register content is
saved and will be accessible when needed.

While an ideal drowsy mode operation can operate at
DRV, in practice it is necessary to add safety margins to take
into account the non-idealities and the mismatch between
the transistors. Figure 4 shows the leakage current savings
when adding different safety margins. The Y-axis plots the
percentage of leakage current consumed by an SRAM cell
operating at DRV+margin, compared to an SRAM cell op-
erating at Vdd. The DRV and Vdd values for each technol-
ogy node are taken from Table 2 . Even if we conservatively
add 250mV to DRV an SRAM cell in the drowsy mode con-
sumes less than 10% of the leakage current consumed by the
SRAM cell that operates at full Vdd.

Figure 4. SRAM Cell Leakage Current in
Drowsy Mode with Different Safety Margins
Normalized to Vdd Leakage Current

Switching Policy: The switching policy decides when
to turn ON a register and when to put a register to drowsy
state. In this paper, we describe one switching policy called
read-aggressive and write-conservative. Whenever a spe-
cific warp is assigned to a collector unit, the associated input
and output registers for that warp are switched from drowsy
state to the ON state. The two-level scheduler allocates a
collector unit to a scheduled warp and at the same time the
switch to ON signal will be sent for the input and output
registers. In the most optimistic scenario input registers are
read in the next cycle into the collector unit. Due to bank
conflicts sometimes the collector unit is unable to read the
second input register operand concurrently with the first in-
put operand. Hence, there is a delay between reading the
first and second input operands. Also, sometimes even if
the warp operands are ready it can not be issued to the exe-

cution stage directly because more than one warp(collector
unit) can be ready at the same time; we can issue only one
warp each cycle. In our proposed policy all input registers
of an instruction are woken up as soon as the collector unit
is assigned. However, these registers switch back to drowsy
state independently as soon as they provide data to the col-
lector unit.

For the output register we use a slightly conservative ap-
proach. The output register is kept in the ON state from the
time the collector unit is assigned until the time instruction
completes execution and writes back the result. The score-
board will track the output registers for each issued warp
already. Once the result is ready and written back to the
register file, the scoreboard can instruct the output register
to be switched back to the drowsy state.

It is interesting to note that the destination register is
likely to be used soon by one of the next few instructions
in the warp. Even when the definition to use distance is
small in terms of instructions in the warp, the time between
executing two instructions in the same warp is quite large
since we have a large number of warps. Hence, it is more
power efficient to put the register into drowsy state even if
the instruction that consumes the register value is immedi-
ately after the current instruction in the warp.

4.1 Architectural Support for Tri-mode
Operation

Based on the description above, each register entry in the
register file needs to be in one of three states: namely ON,
OFF and drowsy. In [12], a drowsy control signal is used to
switch the cache line between the drowsy state and the ON
state. To switch between three states the microarchitectural
support suggested in [12] is inadequate for our approach.

In [24] the authors proposed a tri-mode switch that can
put the logic in one of three states ON, OFF and drowsy.
The proposed switch uses MTCMOS transistors to control
the voltage levels and speed. We use the tri-modal switch
to place the unallocated registers into OFF state and all the
remaining registers are placed either in drowsy or ON state.
As described in our switching policy we place the register in
drowsy state by default. Whenever the register is accessed
we move that register to the ON state temporarily to enable
register read/write accesses. The register will switch back
to drowsy state after the operation is complete.

Figure 5 shows the block diagram of the register file
tri-modal control (called the TRIC) unit. The figure shows
two rows of registers and each row has 32 32-bit registers,
named R0T0 indicating Register R0 for Thread T0 and so
on. Each register has its own tri-modal switch that receives
its control signals form TRIC. TRIC will first receive the ap-
plication’s register allocation information. This information
is first extracted by the compiler analysis and is provided as



Figure 5. The Proposed Register File with the Tri-Modal Control Unit(TRIC) and the Coordinated Mask
Aware Control Unit(COMA) Integrated.

part of the application binary metadata. TRIC will use the
allocation information to turn OFF all the unallocated reg-
isters at the start of the application execution and then put
all the allocated registers into drowsy mode by default.

At run time the two level scheduler sends the input and
output registers of the warp that is being assigned a collec-
tor unit to TRIC. TRIC will use this information to move
input and output registers from drowsy to ON stage. Once a
register value is read, the collector unit sets the correspond-
ing input ready bit to ”1” and also informs TRIC that it re-
ceived the register value. TRIC then switches that input reg-
ister back into drowsy state. Finally when a warp enters the
write back stage the scoreboard sends notification to TRIC
that an output register is written. TRIC then switches the
output register to drowsy state.

4.2 Architectural Support for Reducing
Drowsy Wakeup Latency

One potential drawback of using the drowsy technique
is the performance loss due to the wakeup latency. As ex-
plained before, the scheduler only looks at the ready warp
queue to issue a warp for execution. In our baseline imple-
mentation the scheduler sends wakeup notifications to TRIC
for registers associated with the warp that is currently being
scheduled which only gives one cycle lead time. Thus there
is a one cycle delay between when the scheduler sends a
wakeup signal to the registers and when the collector unit
starts reading the register value. Hence, a one cycle wakeup
delay does not cause any performance loss in our base ma-
chine. If the wakeup latency is multiple cycles then there
may be some performance penalty.

In this section we present one potential approach to en-
tirely hide the multi-cycle wakeup latency of a drowsy reg-
ister, albeit with a small modification to our baseline. For
instance, if drowsy wakeup latency is two cycles, then the
scheduler needs to send the register information to TRIC at

least one cycle before issuing the associated instruction to
the collector unit. To handle this case the scheduler can is-
sue one instruction and concurrently look at the ready warp
queue to find the warp that is going to be issued in the next
cycle. If the scheduler knows which warp will be issued
next cycle it can then pro-actively send the register read in-
formation to TRIC one cycle before the warp is scheduled.
Thus one can eliminate a two cycle delay associated with
wakeup of a drowsy register. In fact the scheduler can look
ahead into the ready warp queue to identify the warps that
will be issued ”n” cycles ahead and may wakeup the drowsy
registers to hide up to ”n” cycles of wakeup delay. In the
worst case, the scheduler will only know which warp will
be issued only during the start of the cycle. In this case
the scheduler cannot hide the latency of register wakeup. In
our results section we explored the performance impact of a
range of drowsy cache wakeup latencies, assuming there is
no way to hide wakeup delays beyond one cycle.

5 Reducing Dynamic Power with Active
Mask Aware Gating

In the previous section we described our approach for
reducing the leakage power of the register file. But every
time a register entry is placed in ON state all 32 register
operands associated with a single warp instruction will be
woken up. Thus, every access to the register file will read
128 byte register entry to feed the 32 threads in a warp with
their source operands. Reading such a large register will
incur significant dynamic power because of activating the
bitlines, wordline and the sense amplifiers.

As shown in Figure 3, the number of active threads
within the scheduled warp are fewer than the warp width
of 32 threads. Some benchmarks like nw and nn do not
have more than 16 active threads throughout the execution
time. During runtime many benchmarks have varying num-



ber of active threads within a warp. Scheduling a warp with
partial utilization still activates the wide register file entry.
For example, scheduling a warp with 31 active threads out
of 32 means that we have to charge the wordline segment
of 32 cells, pre-charge 32 bit lines (BL) and 32 bit line bars
(BLB), and activate 32 sense amplifiers, although only 31
of them are useful for warp execution. According to [17],
the active power of read operation from the sram cell is pro-
portional to the number of the accessed bits and the access
time.

The power optimal solution for such an access behavior
is to access only the registers associated with active threads
within a warp. GPGPUs already use an active mask to de-
termine which threads are active and which threads are in-
active. Hence, we will exploit this information to disable
register activity associated with inactive registers. Thus, we
will use the active mask of each warp to disable the BL,
BLB, sense amplifiers and the output multiplexers of the
inactive part of the accessed register.

5.1 Architectural Support

Recall that in our baseline design the register file is
banked and each register entry is 128 bytes wide. In or-
der to support active mask aware access to the register file,
we use the Divided Word Line (DWL) approach [28]. DWL
was originally implemented to save dynamic power on large
caches where a single word need to be accessed at anytime.

Divided Word-Line(DWL): In the DWL technique the
WL is divided or segmented into different wordlines. Fig-
ure 6 shows the schematic for the DWL. Each wordline
has its own local decoder, a simple AND gate, that enables
or disables accessing the SRAM cells attached to that WL
segment. For our work we modified the original DWL ap-
proach so that each access to register entry can provide data
to only a subset of threads within a warp. GPGPU designs
are particularly suited for easy integration of the DWL ap-
proach into a register file. A warp’s active mask provides
all the necessary decoding information to identify active
and inactive threads within a warp. Whenever a register file
is accessed, the active mask of the scheduled warp can be
used by DWL to activate or deactivate the BL and BLB pre-
charge, wordline segments, sense amplifiers and the output
multiplexers.

In order to manage the gating signals we added the co-
ordinated mask aware (COMA) control unit to the register
file. The bottom part of Figure 5 shows the block diagram
of the register file with COMA integrated. When a read or
write operation is issued COMA loads the warp specific ac-
tive mask. It then generates the appropriate control signals
that can be used to gate the inactive registers. COMA con-
sists of a 16 entry mask (same as the number of the collector
units) table indexed by the collector unit entry id. Whenever

the two-level scheduler assigns a warp to a collector unit the
associated active mask will be written in the designated en-
try in the mask table. Every register access request is routed
to COMA along with the collector unit entry id. The active
mask table is then accessed to read the active mask values.
The active mask will then be fed to the gating logic to gen-
erate the appropriate gating signals. The total size of the
active-mask table will be 16*32 = 512 bits. For the output
register, The scoreboard will send the active mask of the
output register to the COMA when the scheduled instruc-
tion reaches the writeback stage.

Figure 6. Schematic of the Divided Wordline

Power Efficiency of Modified DWL: In order to quan-
tify the benefits of the DWL technique, we built a 128 byte
register entry in Cadence. The register is implemented us-
ing the technology files for 90nm, 65nm and 32nm [1]. We
extracted the wordline resistance and the capacitance per
unit length for different technologies[2][10][15]. Also we
estimated the SRAM cell area as 146λ2[2] where λ is the
feature size. The developed RC Model is augmented be-
tween every two cells in the 128 byte register. Even after
accounting for the additional delay in the AND gate, the re-
duced RC effects of a long wire of the DWL approach result
in a 55%, 31% and 23% reduction in the wordline charging
delay for 90nm, 65nm and 32nm technologies, respectively.

Different register file organizations : There are other
possible register file organizations than using a single wide
register entry. One possible implementation is the one used
by [13]. In that organization, the PEs are clustered into
groups of four. Each cluster has its own register file which is
only 16 bytes wide. The narrower register file provides four
32-bit values to the four associated PEs. Another design
option proposed in [29] splits registers into 32 banks where
each bank is just one word wide (4 bytes) and each bank
provides data only to one thread within the warp. In fact,
every bank is statically assigned to provide data to only one
processor element. Irrespective of the register file organiza-
tion the fundamental problem of activating all 32 registers
associated with a single warp still remains. With 32 register
banks there is no need for DWL since the wide register is



already split into multiple banks. However, even if DWL
is not necessary for narrow width registers, the COMA unit
can still be repurposed to gate the bank accesses based on
active mask.

6 Evaluation

6.1 Simulation Setting and Workloads

We evaluated our proposed techniques for leakage
and dynamic power saving techniques using GPGPU-Sim
v3.02[8]. We performed our experiments using a Fermi-like
GPU configuration. The simulator configuration parameters
are shown in Table 3. For the benchmark selection, we cov-
ered different programming styles by selecting benchmarks
from different benchmark suites. The benchmarks cover
different scientific and computation domains that try to ben-
efit from parallel architectures. We used benchmarks from
NVIDIA CUDA SDK[3], rodinia Benchmark suite[21] and
Parboil benchmark suite[5]. The list of benchmarks used
are listed in Table 1.

Hardware Model Fermi
Execution Model In-order
no. of SM cores 16

no. of PE per SM core 32
Register file size 128 kB
Register Width 128 Bytes
no. of Banks 16
Warps/SM 48

Warp Scheduler 2-level Scheduler
PTXPLUS Enabled

Table 3. Simulation Parameters

6.2 Leakage Power Savings with TRIC

In this section we will evaluate the leakage power sav-
ings when using TRIC as discussed in Section 4. Using our
read-aggressive,write-conservative switching policy, regis-
ters spend significant amount of time in drowsy mode. The
unallocated registers are of course entirely turned OFF by
TRIC. For the results presented in this section we assume a
wakeup latency of three cycles, we also assume that during
the wakeup duration the register is operating at full Vdd.
The first bar in Figure 7 shows the leakage power saving
as a percentage of total leakage power consumed without
TRIC which is the baseline.

6.3 Dynamic Power Savings with COMA

The second column in Figure 7 shows the power saving
as a percentage of total dynamic power consumed without

COMA which is the baseline. The dynamic power savings
using the COMA unit depends on the activity of the run-
ning benchmark. Using the categories presented in the mo-
tivation section, it is clear that Category 1 benchmarks will
not benefit from this technique since 100% of warps have
32 active threads. On the other hand, the savings obtained
from applying the technique on Category 2 and Category 3
benchmarks depends on the number of active threads. Some
benchmarks in Category 2 have limited power savings be-
cause most of the scheduled warps have only a few (0,1 or 2)
inactive threads. As a result, the power saving range from
1% to 6%. Benchmarks such as nw and nn have a large
dynamic power savings because they have only 16 active
threads out of 32 in all the scheduled warps. Benchmarks
such as heartwall have varying amount of thread level par-
allelism. But COMA can dynamically adjust the number of
registers that are turned ON thereby reducing the dynamic
power by 46% compared to the baseline. The average dy-
namic power saving through all Category 2 and Category 3
benchmarks is 19%.

6.4 Combined Savings from TRIC and
COMA

In this section we will discuss the results when both
TRIC and COMA are applied together on the register file.
The combined system first uses TRIC to decide which reg-
ister entry to bring to active state from drowsy state. Once
the register is brought into active state COMA is used to de-
cide which registers to activate for that given warp based on
the active mask.

For computing the relative importance of dynamic and
static power, we measure the ratio of the leakage and dy-
namic power of the register file. We used the method pro-
posed by [20] to measure leakage and the dynamic power
in the register file organization under study. We extracted
the SRAM cell dimensions and the bitline and the wordline
capacitances from [2][15]. The simulation results show that
the dynamic power for reading or writing a 128 byte register
is twice the leakage power of the register file bank in 32nm
technology.

The third column in Figure 7 shows the total power
savings as a percentage of the total power. Total power
is computed assuming dynamic power is twice the leakage
power. Category 3 benchmarks have the highest power sav-
ings because they take advantage of both the leakage and
the dynamic power saving techniques. On the other hand,
category 1 benchmarks take advantage of only the leakage
power saving technique and do not gain from the dynamic
power technique. As a result their power saving is less than
that of category 2 and 3 benchmarks.

We also computed total power savings assuming higher
dynamic to leakage power ratio. The results show that on



cutcp
Mri-q

sgemm
blackschoes

backprop
pathfinder

dct8*8
streamcluster

hotspot
heartwall

nw
nn

lbm
sad

bfs
avg

-20%

0%

20%

40%

60%

80%

100%
91%

14%

69%

Tri-Modal Dynamic Total
P

o
w

e
r 

S
a

v
in

g

Figure 7. Leakage Power, Dynamic Power and Total Power Savings

cutcp
Mri-q

sgemm
blackschoes

backprop
pathfinder

dct8*8
streamcluster

hotspot
heartwall

nw
nn

lbm
sad

bfs
avg

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

0.7%

1.0%

Drowsy_2_cycle Drowsy_3_cycle

P
e

rf
o

rm
a

n
c
e

 o
ve

rh
e

a
d

Figure 8. Performance Degradation with Drowsy Wake-up Latency of 2(Drowsy 2 cycle) and
3(Drowsy 3 cycle) Cycles.

average the total power savings are 69%, 59% and 51.5%
when the ratio of dynamic power to leakage power is 2 to 1,
5 to 1 and 8 to 1 respectively.

6.5 Area and Performance overhead

The area overhead in our proposed techniques comes
from the AND gates added to the register file to implement
DWL, the COMA unit and the associated mask table, and
the TRIC unit. The area overhead for all the added compo-
nents is around 4% the size of the total register file area.

As mentioned earlier, a one cycle wakeup latency for a
drowsy register does not impact performance in our base-
line since there is a one cycle slack between instruction
scheduling and register read operation. In case the regis-
ter wakeup latency is more than one cycle, we make the
worst case assumption that wakeup latency delays a warp’s
execution. To quantify the effect of the wakeup latency on
performance, we ran our benchmarks with two and three

cycles wake-up latencies. Figure 8 show the performance
degradation with two and three cycles wake-up latency. The
results show an average performance degradation of 1.02%
in the case of three cycles wake-up latency. Since GPG-
PUs have large number of ready warps even if a warp is
delayed there are other warps that can continue to execute
as long as there is no serious contention on collector units.
Our results in fact show that collector unit contention is
very limited. However, the opportunities to hide the wake-
up latency will diminish when there are not enough ready
warps. For example, the number of warps running in nn,nw
and sgemm benchmarks is less than 20. As a result, these
benchmarks suffer the most performance degradation. On
the other hands, the benchmarks with many active warps
see no performance degradation.

Also, two benchmarks (heartwell and lbm) experienced
performance improvement when the wake-up latency in-
creased from one to two cycles. We analyzed the per-
formance statistics for those benchmarks and it turns out



that the additional wakeup delay lead to a different warp
scheduling sequence. The newly scheduled warp sequence
encountered fewer cache misses due to locality improve-
ments. Hence the stalls due to the memory contention were
reduced. As a result these benchmarks saw a slight perfor-
mance improvement due to scheduling perturbations.

7 Related Work

Our work relies on three important prior works. Drowsy
caches have been proposed as an efficient technique to re-
duce the leakage power consumption[12]. Also, [24] pro-
posed a tri-modal switch that can be used to switch the
combinational or sequential logic into one of three states,
namely ON, off and sleep. [17] and [28] discussed the DWL
technique to avoid charging the wordline for the SRAM
cells that are not part of the accessed word. In our study
we modified these prior approaches and applied them in the
context of GPGPU register file accesses.

CPU Register File and Cache Power Consumption :
Dynamic and leakage power reduction techniques for CPU
register file have been extensively studied. Techniques have
been proposed to reduce the register file power consumption
at the software level[7][26], the microarchitecture level[11]
and the circuit level[16]. [14] used a compile time regis-
ter file partitioning and code recompilation to reduce the
number of active registers used. They divided the regis-
ter file into active and inactive partitions. They used the
drowsy technique to put the unused partitions in the drowsy
mode. Their approach needs code recompilation and explic-
itly forces applications to use reduced register set to save
power. Our approach neither needs code recompilation nor
places any restrictions on register usage.

Cache leakage power reduction received significant at-
tention. [12] and [18] proposed using the drowsy leak-
age current reduction technique on the data and instruction
caches. [6] and [22] studied the leakage power reduction
in caches. They used the prior knowledge of the cache ac-
cess patterns and cache line inter-access time to apply the
drowsy or cache line turn off techniques to reduce leakage
power. When a cache line is turned off they rely on lower
levels of memory hierarchy to fetch the data when needed.
These techniques are applicable to cache designs in tradi-
tional CPUs but not for register files in GPGPUs. Turning
off the register file after an extended idle period is not a vi-
able option since there is no additional memory hierarchy
levels to fetch the lost register data. In our work we studied
the policies, the architecture and the circuit level modifi-
cations that are needed to reduce the GPGPU register file
power consumption with negligible performance overhead.

GPU Power Consumption: GPU leakage power con-
sumption reduction techniques have been proposed. In
[27] the authors proposed saving the GPU leakage power

through gating the unused processing elements. In [9]
the working frequency and available SMs are dynamically
modified during the application run to minimize the overall
power consumption.

GPGPU Register file power consumption: In [13] the
authors have studied the register file dynamic power reduc-
tion using a register file cache (RFC). RFC reduces the num-
ber of accesses to the main register file. RFC caches the reg-
isters that have been accessed recently by the active warps.
This approach targets the dynamic power but not the leak-
age power. In [29] authors implemented the register file us-
ing the embedded DRAM(eDRAM). They divided the reg-
ister file into a set of contexts. Each context holds the data
for a set of warps. Every time they switch from one con-
text to the other one they switch in the registers into the
SRAM part of the memory and switch out the unused part
into the DRAM part of the eDRAM. These two prior works
on GPUs focused on reducing dynamic power of GPU reg-
ister file. But in a Fermi-like configuration there are even
greater opportunities to save on static power which our work
exploits. Given the size of the register file in GPGPUs it
is clear that static power reduction techniques will become
critical going forward. Our work thus focuses on reducing
the dynamic as well as static power consumption with neg-
ligible performance penalty and small hardware overhead.

8 Conclusion

GPGPU register file power consumption is a significant
concern. Using a detailed workload characterization we
show GPGPU-specific opportunities that can be exploited to
reduce the register file power savings. In this paper we pro-
posed two GPGPU-centric power saving techniques to re-
duce the static and dynamic power consumption of GPGPU
register file. The first technique relies on a TRIC unit. TRIC
uses a tri-modal switch to turn OFF registers that are not
allocated for program execution. It then places all allo-
cated registers into drowsy state by default and brings them
to active state only when they are being accessed. Given
the large inter-access distance to registers this aggressive
drowsy state management mechanism suffers on average
1% performance overhead. The second technique relies on
a COMA unit. COMA uses the active mask of a warp to
eliminate the activation of the unused register segments in
a wide register file organization. The two proposed tech-
niques combined are able to reduce the total power con-
sumption of the register file by 50% to 90%.

Acknowledgements: We would like to thank our pa-
per shepherd Prof. Tor Aamodt for his valuable comments.
This work was supported by DARPA-PERFECT-HR0011-
12-2-0020 and NSF grants NSF-1219186, NSF-CAREER-
0954211, NSF-0834798.



References

[1] Arizona state university predictive technology model. ,
http://ptm.asu.edu.

[2] Cacti 6.0: A tool to understand large caches.
http://www.cs.utah.edu/ rajeev/cacti6/.

[3] Nvidia cuda sdk 4.2. developer.nvidia.com/cuda/cuda-
downloads.

[4] Nvidia, fermi white paper v1.1.
http://www.nvidia.com/content/PDF/fermi white papers/
NVIDIA Fermi Compute Architecture Whitepaper.pdf.

[5] Parboil benchmark suite.
http://impact.crhc.illinois.edu/parboil.php.

[6] J. Abella, A. González, X. Vera, and M. F. P. O’Boyle. Iatac:
a smart predictor to turn-off l2 cache lines. ACM Transac-
tions on Architecture and Code Optimiization, 2(1):55–77,
2005.

[7] J. L. Ayala, A. Veidenbaum, and M. López-Vallejo. Power-
aware compilation for register file energy reduction. Inter-
national Journal of Parallel Programming, 31(6):451–467,
Dec. 2003.

[8] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt.
Analyzing cuda workloads using a detailed gpu simulator.
In IEEE International Symposium on Performance Analysis
of Systems and Software, pages 163 –174, April 2009.

[9] J. M. Cebri’n, G. D. Guerrero, and J. M. Garcia. Energy effi-
ciency analysis of gpus. In IEEE 26th International Parallel
and Distributed Processing Symposium Workshops PhD Fo-
rum (IPDPSW), pages 1014 –1022, May 2012.

[10] T.-J. Changhwan Shin, King, B. Liu, E. Nikolic, and Haller.
Advanced mosfet designs and implications for sram scaling.
Technical Report, 2011.

[11] J.-L. Cruz, A. González, M. Valero, and N. P. Topham.
Multiple-banked register file architectures. In Proceedings
of the 27th annual international symposium on Computer
architecture, pages 316–325, 2000.

[12] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy caches: simple techniques for reducing leakage
power. In Proceedings of the 29th Annual International
Symposium on Computer Architecture, pages 148 –157,
2002.

[13] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J.
Dally, E. Lindholm, and K. Skadron. Energy-efficient mech-
anisms for managing thread context in throughput proces-
sors. In Proceedings of the 38th annual international sym-
posium on Computer architecture, pages 235–246, 2011.

[14] X. Guan and Y. Fei. Register file partitioning and recompi-
lation for register file power reduction. ACM Transactions
on Design Automation of Electronic Systems, 15(3):24:1–
24:30, May 2010.

[15] R. Ho. On-chip wires: Scaling and efficiency. PhD Dis-
sertation, Department of Electrical Engineering, Stanford
University, August 2003.

[16] J. Hu, T. Xu, and H. Li. A lower-power register file based
on complementary pass-transistor adiabatic logic. IEICE -
Transactions on Information and Systems, E88-D(7):1479–
1485, July 2005.

[17] K. Itoh, K. Sasaki, and Y. Nakagome. Trends in low-
power ram circuit technologies. Proceedings of the IEEE,
83(4):524 –543, April 1995.

[18] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge. Drowsy
instruction caches: Leakage power reduction using dynamic
voltage scaling and cache sub-bank prediction. In Proceed-
ings of 35th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 219 – 230, 2002.

[19] M. Kondo and H. Nakamura. A small, fast and low-power
register file by bit-partitioning. In Proceedings of the 11th
International Symposium on High-Performance Computer
Architecture, pages 40 – 49, February. 2005.

[20] X. Liang, K. Turgay, and D. Brooks. Architectural power
models for sram and cam structures based on hybrid ana-
lytical/empirical techniques. In Proceedings of IEEE/ACM
International Conference on Computer-Aided Design, pages
824 –830, November. 2007.

[21] M., A., M. Goodrum, J., A. Trotter, S. Aksel, T., K. Acton,
and Skadron. Parallelization of particle filter algorithms. In
3rd Workshop on Emerging Applications and Many-core Ar-
chitecture (EAMA), 2010.

[22] Y. Meng, T. Sherwood, and R. Kastner. On the limits of
leakage power reduction in caches. In Proceedings of the
11th International Symposium on High-Performance Com-
puter Architecture, pages 154–165, 2005.

[23] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov,
O. Mutlu, and Y. N. Patt. Improving gpu performance via
large warps and two-level warp scheduling. In Proceedings
of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 308–317. ACM, 2011.

[24] E. Pakbaznia and M. Pedram. Design and application
of multimodal power gating structures. In International
Symposium on Quality Electronic Design, pages 120 –126,
March 2009.

[25] S. Park, A. Shrivastava, N. Dutt, A. Nicolau, Y. Paek, and
E. Earlie. Bypass aware instruction scheduling for register
file power reduction. volume 41, pages 173–181, June 2006.

[26] S. Park, A. Shrivastava, N. Dutt, A. Nicolau, Y. Paek, and
E. Earlie. Register file power reduction using bypass sensi-
tive compiler. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 27(6):1155 –1159,
June 2008.

[27] P.-H. Wang, C.-L. Yang, Y.-M. Chen, and Y.-J. Cheng.
Power gating strategies on gpus. ACM Transactions on
Architecture and Code Optimimization, 8(3):13:1–13:25,
2011.

[28] M. Yoshimoto, K. Anami, H. Shinohara, T. Yoshihara,
H. Takagi, S. Nagao, S. Kayano, and T. Nakano. A divided
word-line structure in the static ram and its application to a
64k full cmos ram. IEEE Journal of Solid-State Circuits,
18(5):479 –485, October. 1983.

[29] W.-k. S. Yu, R. Huang, S. Q. Xu, S.-E. Wang, E. Kan, and
G. E. Suh. Sram-dram hybrid memory with applications
to efficient register files in fine-grained multi-threading. In
Proceedings of the 38th annual International Symposium on
Computer Architecture, pages 247–258, 2011.


