
MACAU: A Markov Model for Reliability Evaluations of Caches Under Single-bit

and Multi-bit Upsets

Jinho Suh, Murali Annavaram and Michel Dubois

Ming Hsieh Department of Electrical Engineering

University of Southern California, Los Angeles

{jinhosuh, annavara}@usc.edu, dubois@paris.usc.edu

Abstract

Due to the growing trend that a Single Event Upset

(SEU) can cause spatial Multi-Bit Upsets (MBUs), the

effects of spatial MBUs has recently become an

important yet very challenging issue, especially in

large, last-level caches (LLCs) protected by protection

codes. In the presence of spatial MBUs, the strength of

the protection codes becomes a critical design issue.

Developing a reliability model that includes the

cumulative effects of overlapping SBUs, temporal

MBUs and spatial MBUs is a very challenging

problem, especially when protection codes are active.

In this paper, we introduce a new framework called

MACAU. MACAU is based on a Markov chain model

and can compute the intrinsic MTTFs of scrubbed

caches as well as benchmark caches protected by

various codes. MACAU is the first framework that

quantifies the failure rates of caches due to the

combined effects of SBUs, temporal MBUs and spatial

MBUs.

1. Introduction

Caches occupy more than half of the chip real estate in

today’s microprocessors and their reliability is

therefore a critical design issue. The charge stored in a

memory cell such as an SRAM cell decreases with

every process generation. As a result, memories

become more and more susceptible to random,

transient errors called soft errors. The vulnerability of

a memory cell to soft errors increases further when

caches operate at lower voltage using techniques such

as drowsy supply voltages [8] and sub-threshold

voltage operation [7] to reduce static power dissipation.

A system’s soft error reliability must be measured

during its design phase to determine appropriate error

protection mechanisms for every component.

Otherwise, building a system that meets reliability

specifications is a guessing game.

Soft errors are usually due to neutron or alpha particle

strikes. A single strike of such particles causes an

event called Single Event Upset (SEU) if the event

disturbs the content of the memory. An SEU can flip

one bit cell (SBU: Single-Bit Upset) or multiple bit

cells (MBU: Multi-Bit Upset). While the energy

transferred by a particle strike remains the same over

time, memory cells become geometrically smaller and

hold less charge as technology advances, making them

rapidly more vulnerable to MBUs. A spatial MBU is

an MBU resulting from an SEU. By contrast, an MBU

resulting from multiple SEUs over time is called a

temporal MBU. The silicon industry projects that,

starting from year 2015, all SRAM arrays will be

mostly affected by spatial MBUs [25]. Therefore

system designers must prevent spatial MBUs from

corrupting correct system operation [2][3][18][19].

Many studies have characterized and modeled spatial

MBUs [9][12][14][17][21][22][23].

Circuit designers usually concentrate on measuring the

intrinsic FIT (Failures-in-Time of 10
9
 hours) rate or

intrinsic MTTF (Mean-Time-to-Failure), assuming that

all the memory cells in the structure are always critical

for correct execution. The intrinsic MTTF is the

expected time until the memory cells fail due to

particle hit(s) when all the cells are holding

information critical to the computation and are not

accessed until they fail. This measurement results in an

over-estimation of the vulnerability of a memory

system because during a program execution not all bits

are critical to correctness, and moreover every access

to them may activate a protection code and correct the

faulty bit(s). Still, this intrinsic MTTF gives a first,

rough estimate of the vulnerability of memory

structures and thus is a widely accepted quantification

of their reliability. Intrinsic MTTFs are independent of

the workload and thus particularly relevant to

designers of general-purpose systems.

Reliability benchmarking yields better estimates of the

number of bits critical to execution correctness by

factoring in a de-rating factor called Architectural

Vulnerability Factor (AVF) [5]. Recently, a rigorous

model called PARMA [26] which includes the effects

2

of SBUs and temporal MBUs was proposed in order to

correct the rough approximations inherent in classical

approaches based on AVF analysis [1][5]. With

PARMA, a designer can benchmark the vulnerability

of caches protected by codes such as SECDED or

parity. Such reliability benchmarking helps designers

decide on protection codes amongst multiple design

options. To the best of our knowledge, no study has

been published on benchmarking soft-error reliability

when SBUs, spatial MBUs and temporal MBUs

coexist.

In this paper, we propose a model called MACAU (a

MArkovian model for reliability evaluations of

CAches under single-bit and multiple-bit Upsets).

MACAU can compute the intrinsic FIT rate or the

intrinsic MTTF, as well as benchmark the soft-error

reliability of caches with various protection codes. The

contributions of our paper are as follows.

¶ We introduce MACAU, a model that measures the

reliability of caches protected by various

protection codes when SBUs, temporal MBUs and

spatial MBUs coexist.

¶ We demonstrate that MACAU can compute the

intrinsic MTTF of SEC-protected caches under

SBUs and of DEC-protected caches under SBUs

and 2BUs (2-Bit Upsets) and we compare its

results to previously proposed models [21][23].

However MACAU goes beyond these models to

compute the intrinsic MTTF when SBUs,

temporal MBUs and various spatial MBUs coexist,

which previous models cannot compute.

¶ We demonstrate how MACAU benchmarks the

FIT rates of caches with various protection codes

on a set of benchmark programs.

The rest of the paper is organized as follows. We

review the related work in Section 2. In Section 3, we

define the terminology and expose the MACAU model

in detail under a physical model of SEUs. We also

show how MACAU computes the intrinsic MTTF and

benchmarks caches with various protection schemes

when there are at most two SEUs. Then in Section 4,

we show the intrinsic MTTFs and benchmarking

results of MACAU and verify them with previous

state-of-the-art methods. In Section 5, we discuss how

to deal with several SEUs. We conclude in Section 6.

2. Related work

One common approach to model and estimate the

vulnerability of various components is fault injection.

Faults are statistically injected into the detailed RTL

model or the simulation of the system under study [13].

While this framework is conceptually simple and can

model any type of error, including spatial MBUs, it

requires an astronomical number of extremely long

simulation experiments to obtain statistically

meaningful results. Accelerating the fault injection rate

is a possible solution to avoid such long and expensive

simulations. However large quantitative and qualitative

distortions due to simulation acceleration were

reported in [26].

Several recent studies have focused on computing the

FIT rate due to SBUs [1][5]. These studies are based

on AVF analysis and assume that no more than one

SBU can hit a set of bits during the time it resides in a

processor structure and are widely accepted for

benchmarking internal processor storage buffers such

as load/store queues (LSQs) or reorder buffers (ROBs).

The probability of temporal MBUs in caches,

especially large last-level caches, is much higher than

in processor buffers since blocks can reside in cache

for millions of cycles between two consecutive

accesses to them. PARMA [26] models the effect of

temporal MBUs. It benchmarks ECC-protected caches

and demonstrates how designers can address the

cost/benefit tradeoffs of various protection schemes.

The effects of temporal MBUs were also studied in

[18][23] but only for estimating the intrinsic MTTF on

SEC-protected caches under SBUs or on DEC-

protected caches under up to two SBUs. By ignoring

the effect of activating protection code and correcting

faulty bit(s) whenever an access is made to the cache,

these approaches cannot benchmark caches.

Due to the growing impact of spatial MBUs, many

recent studies including [2][3][17][21][22] estimate the

intrinsic MTTF of spatial MBUs in SRAM structures.

The study in [2] uses a compound Poisson process [22]

to model spatial MBUs and to decide on the

interleaving distance of SECDED code to suppress

spatial MBUs, but this model cannot benchmark

caches. In [17] and [21], it is reported that the intrinsic

MTTF in the presence of spatial MBUs can be

approximated by the model in [23], which computes

the intrinsic MTTF under SBUs only. This is clearly an

approximation, but these observations show that state-

of-the-art soft-error benchmarking frameworks like

PARMA are credible even in the presence of spatial

MBUs.

Studies in [9][12][14] based on beam-injection

experiments report how spatial MBUs affect real chips.

Such data is critical to model the complex fault

patterns of spatial MBUs. A recent study in [14]

observed that patterns of spatial MBUs in SRAM

arrays built with a 40nm deep-n-well process are

highly affected by the placement of N and P wells. In

most cases, spatial MBUs are clustered as a connected

group and are parallel to wells. When the wells are

placed in the bitline (vertical) direction, at most two

3

bit-upsets are observed in the wordline (horizontal)

direction while up to four upsets are observed in the

bitline direction. Similar observations were made for

65nm bulk SRAMs in [27].

Integrating various geometric fault patterns resulting

from interactions of SBUs, spatial MBUs and temporal

MBUs in a single model is an unanswered, challenging

problem so far. MACAU is a unified framework that

models SBUs and MBUs at the same time. It not only

measures the intrinsic MTTF of caches with various

protection schemes with or without scrubbing, but it

also benchmarks the FIT rate of such caches under real

workloads.

3. The MACAU model

Here we explain the MACAU model in detail. We start

by defining terms and explaining how to compute

reliability metrics in Section 3.1. In Section 3.2, we

show the cache configurations and the physical model

of SEUs, especially the kind of patterns of spatial

MBUs considered in MACAU. Then we describe the

MACAU model in Section 3.4, with the assumptions

made in Section 3.3.

3.1 Setups

PARMA [26] demonstrates a well-defined framework

to compute the FIT rates of memory systems in

benchmarks by counting the expected number of errors

in actual program executions. We adopt the same setup

in MACAU. If the fault in an SRAM cell propagates to

an outer scope (for example, if a faulty bit in the L2

cache is copied to the L1 cache and is not detected or

is detected but is uncorrectable), then the fault

becomes an error. In the case of a detected but

uncorrectable error, a fatal exception is raised and the

system halts. In the case of an undetected error, the

system may crash due to various reasons. When such

an event happens, we call this event a failure. Failures

can be categorized further into TRUE DUE (Detected

Unrecoverable Error), FALSE DUE or SDC (Silent

Data Corruption) error. Among all failures, if a failed

bit is consumed by the processor as a committed

instruction or as a committed operand [26], the result is

a TRUE DUE or an SDC. An L2 block is copied to L1

in block granularity but the processor accesses L1 in

word granularity. Thus finding TRUE DUEs or SDCs

of L2 blocks requires tracking accesses until L1 blocks

are evicted, as was done in [26].

In order to benchmark reliability in a system, we

measure the probability of any component failure in a

system in every cycle, assuming that no more than one

failure of the same component may occur in the same

cycle. The MACAU framework can benchmark the

reliability of memories, as well as estimate their

intrinsic MTTF, which does not involve benchmark

programs and assumes that all cached data are critical.

Let’s index each processor cycle by j (where 1 ≤ j ≤

Figure 2. The probability distribution of MBUs for omni -directional galactic cosmic rays [27] in
the cache layout shown in Figure 3(b).

0 1 2 3 4 5 6 7 8 9 10

10
-4

10
-3

10
-2

10
-1

10
0

Number of columns

P
ro

b
a
b
ili

ty
 o

f
e
v
e
n
t

0.89

0.009

0.05948

0.013 0.015

0.007

0.002
0.0012 0.001

0.0007
0.00050.0004

0.0002
0.00015

0.0001
7e-005

0.00015

5e-005

1 row

2 row

Figure 1. Patterns of spatial MBUs in a n SEU

(a) (b) (c)

4

Texe). Then hERR(j), the discrete time failure probability

mass at the j
th

 cycle, is defined as:

 Ὦ 0ÒÏÂ4ÙÐÅ ὉὙὙ ÆÁÉÌÕÒÅ ÁÔ Ὦ ȿ

ÓÙÓÔÅÍ ÓÕÒÖÉÖÅÄ ÁÌÌ ÆÁÉÌÕÒÅÓ ÕÎÔÉÌ Ὦ
(1)

hERR is the conditional probability (also called “hazard

mass”) that a failure of type ERR (ERR can be SDC,

TRUE DUE or FALSE DUE) has occurred at the j
th

cycle, given that the system survived all types of

failures up to the j
th

 cycle. Thus the total expected

number of failures of type ERR observed during the

execution time Texe of a benchmark is:

 Ὕ Ὤ Ὦ ὉὉὙὙ (2)

HERR(Texe)/Texe is the failure rate for errors of type ERR.

We can extrapolate the observed failure rate to the

more familiar FIT rate by simply scaling time. Then,

the average FIT rate for a set of applications running

one after another independently on a processor is

calculated as:

ὊὍὝ Ὢ ὊὍὝȟ
ᶪ

Ὢ
Ὁ ὉὙὙ σφππρπ

Ὕ ȟ ὅώὧὰὩὖὩὶὭέὨ
ᶪ

(3)

where fw (=Texe,w/Texe,all) is the fraction of time taken by

the execution of workload w. FITw,ERR is the FIT rate

extrapolated from Ew[ERR]. We will use (3) to report

our benchmarking results in FIT rates in Section 4.3.

One important observation is that accumulating the

expected number of failures while continuing the

benchmark is equivalent to classical survival analysis

where failed components are replaced. This is

consistent with the nature of transient faults.

We adopt two terms from [26].

Vulnerability clock cycles (VCCs): The vulnerability

clock cycles of a bit are the processor clock cycles

during which the bit resides in the target memory

structure to benchmark (i.e., a cache) between two

accesses to it. If a block stays for J cycles in the target

cache before eviction after its last access and then is

reloaded later in the target cache, these J cycles are

VCCs since it is possible that a particle strike during

the J cycles and the faulty bits are consumed later.

VCC tracking is equivalent to lifetime analysis for

ACE cycles [5].

Protection domain (PD): The protection domain is the

set of bits covered by the protection code. For example,

if odd parity is calculated over the block, bits in the

entire block form the PD. If a SECDED code protects a

word, the PD is the word. In the balance of this paper,

the protection domain is a word of 32 bits.

3.2 Physical model

3.2.1 SEU model

In MACAU one clock cycle is the minimum unit of

time. The probability that a PD (a word of 32 bits) has

an SEU in one cycle is denoted by pSEU,PD. All clock

cycles are independent: whether a PD is struck or not

at clock cycle j is independent of whether or not it was

hit in any previous cycles from 1 to j-1. This means

that SEUs are a renewal process (in fact a Poisson

process) so that the probability distribution of SEUs is

always the same after every cycle.

In order to compute pSEU_PD, the SEU rate obtained

from the ITRS roadmap [25] is first scaled for the PD

and for one clock cycle. The intrinsic SEU rate is

1,150 SEUs per 10
9
 hours for 1Mbit SRAM array [25].

Throughout this paper the PD is a word and we use the

value pSEU_PD = 3.2496E-24 for a 3GHz processor.

3.2.2 Spatial MBU model

Several experimental observations have been reported

recently on the distribution of spatial MBUs in real

chips from beam injection experiments [9][12][14]. In

Figure 1, each white cell shows undisturbed bit cells

and black cells show flipped bit cells due to particle

hits. Each dotted rectangle includes a spatial MBU

caused by an SEU. One noticeable observation from

recent studies is that spatial MBUs are usually compact,

i.e. faults are confined to a contiguous rectangle.

Referring to Figure 1, the fault pattern in (a) happens

most of the time while the fault patterns in (b) and (c)

are observed very rarely [9][14]. As a result, in general

[27], the dimension of a spatial MBU event is specified

as follows:

-"5 $ÉÍÅÎÓÉÏÎὔ ὔ (4)

where Nrow and Ncolumn are the horizontal and vertical

dimensions of the pattern of bit cells flipped due to a

spatial MBU event. For example, the leftmost event in

Figure 1(a) is a 2×1 spatial MBU. Rows and columns

in (4) usually point to wordline and bitline directions

respectively. Note that MACAU does not ignore cases

such as in Figure 1(b) or (c). How to address such

cases will be discussed in Section 3.3.

In this paper, we adopt the probability distribution of

MBUs reported in [27], which is shown in Figure 2. In

this figure the probability of occurrence is attached to

each data point. At most two rows and up to nine

columns are affected by an SEU. However, because

the probability of having more than four columns is

very small (below 1E-3), we concentrate on MBU

patterns included in the dotted square in Figure 2, for

5

the purpose of demonstrating MACAU. We address

spatial MBUs of 1×1, 1×2, 1×3, 2×1, 2×2 and 2×3

only in this paper. Distribution is weighted for those

patterns such that the sum of their probability equals

one. However, as explained in Section 3.4, MACAU

can deal with other geometries.

3.2.3 Cache configuration

Figure 3 shows the cache configuration throughout this

paper. The cache is divided into several slices to

reduce wordline capacitance. In each slice a word in

the block is protected by a protection code such as odd

parity, SECDED, DECTED or TECQED. Because

spatial MBUs may overlap across multiple rows, one

single SEU can affect two PDs. The same is true of

two different words in the same row, i.e. word 0 and

word 1 if the MBU that flips multiple columns happens

to hit the border between those two words.

In this configuration, N- and P-wells can be placed in

the bitline direction as in Figure 3(a) or in the wordline

direction as in Figure 3(b). A study in [14] reports that

spatial MBUs are usually observed in the direction of

the wells because parasitic bipolar transistors

contribute mostly to MBUs and only NPN transistors

turn on in deep-N-well processes. At most two flips

have been observed in a spatial MBU in the direction

perpendicular to wells. At most two bit flips are

observed in wordline direction in Figure 3(a) or in

bitline direction in Figure 3(b). Our SEU model

focusses on caches laid out like in Figure 3(b).

3.3 Modeling spatial MBUs

In this section we expose the complexity of a rigorous

spatial MBU model and the relaxations to make the

model feasible.

3.3.1 Complexity due to spatial MBU patterns

Figure 4 shows what the resulting patterns may be after

two spatial MBUs overlap. Dotted rectangles frame the

PD (word) in the figure. Faulty bits are darkened and

fault patterns are circled. Spatial MBUs can happen

inside the PD (as in fault patterns 4, 5, 6) or across PDs

(as in fault patterns 1, 2, 3, 7). At first an SEU (such as

fault patterns 1 to 4) happens as shown in Figure 4(a).

Then a second SEU (such as fault patterns 5 to 7)

strikes the same PD as shown in Figure 4(b). The

faulty bit patterns resulting from the superimposition

of the two MBUs are shown in Figure 4(c). We make

several observations.

i. Overlap of MBU footprints: If two spatial MBUs

overlap, the bit cells flipped by the first SEU can

be flipped back to their correct value. Thus two

spatial MBUs may end up having less faulty bits

than the sum of their footprints.

ii. Two overlaps in the same PD: For example in

PD#1, the second bit is first flipped by SEU 1.

Then, due to SEU 5, this second bit is flipped back

to a correct state. However, the first and third bits

remain faulty. The resultant faulty bit pattern in

PD#1 now has two disjoint SBUs.

iii. Vertical overlaps across PDs: If a spatial MBU

overlaps vertically across PDs as in faults 1, 2, and

7, it can be considered as two spatial MBUs, each

one in a different PD. For example, SEU 1 can be

counted as two SBUs, one in PD#1 and one in

PD#5, and SEU 7 can be counted as two spatial

1×3 MBUs in PD#4 and PD#8.

iv. Horizontal overlaps across PDs: This is essentially

the same case as the above case (iii) but is a little

more subtle. SEU 3 is harder to deal with as it can

be divided into one spatial MBU of 1×2 in PD#3

and one SBU in PD#4. We call this an edge effect.

Major challenges in modeling spatial MBUs come

from cases (ii) and (iv) above. In the following section

we discuss how we deal with such cases.

3.3.2 Simplifying the spatial MBU problem

3.3.2.1 Case: second SEU to the same word

SEUs happen very rarely in a realistic environment.

ITRS reports that the SEU rate for an 1Mbit SRAM

array is around 1,150 ~ 1,300 SEUs per 10
9
 hours [25].

This suggests that, during the time a system is running

an application, a PD is extremely unlikely to be hit by

Figure 3. Cache configurations. Each dotted rectangle shows a protection domain

NP

bitline

wordline

Word 0

Cache SliceWells:

Block
Word 1 Word 2 Word 3

Word 4 Word 5 Word 6 Word 7

(a) Wells in the bitline direction

wordline

Word 0

Cache Slice

Block
Word 1 Word 2 Word 3

Word 4 Word 5 Word 6 Word 7

(b) Wells in the wordline direction

P
N

bitline

6

more than one or two SEUs. As an example, using the

Poisson probability mass function, the probability that

any one word is hit three times (three SEUs) during

one billion cycles in a 3GHz processor is 5.7190E-45.

As discussed before, most spatial MBUs are

contiguous, rectangular-shaped clusters. Therefore, if a

word has k faulty bits when the second SEU hits it, the

pre-existing MBU pattern due to the first SEU is most

likely 1×k and we are reduced to calculating the

probabilities of various overlapping scenarios between

the new SEU and any of k existing contiguous faulty

bits.

3.3.2.2 Case: edge effect

Usually a PD is much wider than most frequent spatial

MBUs (up to 3 bit per SEU as shown in Figure 2)). If a

spatial 3BU spans over two PDs horizontally, it would

increase the vulnerability of up to two bits sitting next

to the borders of PDs. Therefore, its impact is

insignificant since the probability of having such cases

is around 6% (= # Ⱦ #) and the increased

vulnerability due to such 6% of events is capped by at

most two bits among 32 bits in a PD. Therefore, we

simply ignore the edge effect exposed in case (iv) in

Section 3.3.1.

3.3.2.3 Case: non-contiguous spatial MBUs

Since SEUs happen very rarely during the execution of

a typical program, most words experience at most one

SEU. Today’s data on MBUs ([9][12][14]) reports that

non-contiguous patterns such as in Figures 1(b) and (c)

are extremely rare.

However if non-contiguous patterns are possible,

MACAU can still address non-contiguous patterns.

Since non-contiguous patterns are much rarer than

contiguous patterns, we can replace patterns in Figures

1(b) and (c) by those of Figure 1(a) by considering that

all the bits inside the entire dotted rectangles in Figures

1(b) and (c) are flipped. As a result, we simplify

dealing with extremely rare non-contiguous patterns in

the model, with minimal overestimation.

3.3.2.4 Limitations of MACAU

In previous subsections we simplified the problems

associated with spatial MBUs. We made two strong

assumptions: 1) SEUs happen very rarely in a given

domain during the execution time of typical programs,

and 2) spatial MBUs have contiguous patterns most of

the time. Both assumptions agree with the observations

made in chips built with current-generation technology.

The MACAU model should be revised in future if new

data disagrees with one of these assumptions. However,

we believe these two assumptions will remain valid

even with future technology because of the following

two reasons: 1) even in space under worst-case GEO

flare, the SEU rate increases by 10 orders of magnitude

[3], which increases the probability of one SEU during

one cycle from 10
-25

 to 10
-15

(which

is still extremely

small) and 2) spatial MBUs happen because of small

cell pitch and the parasitic bipolar transistors in wells;

by comparison the location of the diffusion area that

collects charges is not significant [24], meaning that

non-contiguous patterns are not likely to appear.

3.4 The MACAU model

In this section we explain the MACAU model in detail.

3.4.1 The Markov chain

A transition in the Markov chain occurs in every

processor cycle. The state names in the Markov chain

are the number of faulty bit in the PD. Hence with a

32-bit word, there are 33 states in the Markov chain.

Figure 4. Overlapping effects of spatial MBUs

ŏ...

1

ŏ...

ŏ...4

PD#4

PD#5 PD#8

PD#1

(a)
ŏ...

PD#2

ŏ...

PD#3

3

ŏ...ŏ... ŏ...

PD#6 PD#7

ŏ... ŏ...

ŏ...

PD#4

PD#5 PD#8

PD#1

(b)
ŏ...

PD#2

ŏ...

PD#3

ŏ...ŏ... ŏ...

PD#6 PD#7

(c)

2

5 6

7

ŏ... ŏ...

ŏ...

PD#4PD#1

ŏ...

PD#2

ŏ...

PD#3

ŏ...ŏ... ŏ...

PD#5 PD#8PD#6 PD#7

(a) + (b) = (c)

7

Once the Markov chain is built, we can express the

probability of having k faulty bit in the PD by

computing the transition probability from state 0 to

state k after t VCCs. Figures 5(a) and (b) show the

transitions of the Markov chain for the number of

faulty bits in a 32-bit word PD in the presence of SBUs

only and in the presence of SBUs plus 2BUs

respectively. In Figure 5(c), we show the

generalization of the Markov chain for SEUs with up

to m bit upsets. The figure shows the transitions

between sets of states M={k-m, k-m+1, …, k-1, k, k+1,

…, k+m-1, k+m}. The transition probabilities between

a state k and any state (among a total of 2m+1 states) in

M are specified in a transition matrix T. In general, if

an SEU may flip up to m bits in the PD, each row and

column of T has at most 2m+1 nonzero elements.

A Markov state is transient if the probability of not

returning to it after departing from it is nonzero. A

state is called recurrent if it is not transient, meaning it

will eventually be revisited. One special case of a

recurrent state is an absorbing state. A state is an

absorbing state when no more transition to other states

is possible once that state is visited.

3.4.2 Transition matrix T

Matrix T contains the state transition probabilities in

every processor clock cycle. To build the matrix we

start with pSEU_PD, the probability of an SEU in a word

in a cycle. Every SEU has some probability of causing

one SBU or one spatial MBU with various patterns.

The probability distribution is shown in Figure 2,

inside the dotted square. We build a probability matrix

D for events confined to the dotted square as:

Ἆ
Ὠȟ Ὠȟ Ὠȟ
Ὠȟ Ὠȟ Ὠȟ

 (5)

where da,b is the probability of an SEU being a a×b

spatial MBU. The maximum dimension is 2×3 in the

fault pattern. Note that matrix D could have higher

dimension in general. Without loss of generality, we

limit the dimension to 2×3 for demonstration purposes.

As discussed in Section 3.3, we can take into account

the effect of spatial, compact MBUs with two rows by

increasing single-row SEU probabilities. Thus we

build the probability of having a 1BU, a 2BU or a 3BU

inside the PD (a word) in one cycle from pSEU_PD and D

as follows.

Ἔ

ὴ
ὴ
ὴ

ὴ ͺ Ὠȟ ς Ὠȟ

ὴ ͺ Ὠȟ ς Ὠȟ

ὴ ͺ Ὠȟ ς Ὠȟ

 (6)

d2,b (b = 1, 2, 3) is multiplied by two in (6) since two-

row spatial MBUs flip bits in two vertically adjacent

PDs. In general, if a spatial MBU spans up to z rows,

z×dz,b is added to d1,b (b = 1, 2, …). Matrix P gives the

probabilities of having a 1×1, a 1×2, or a 1×3 MBU in

a single word in any processor cycle. In the current

MACAU setup we only consider 1×k MBUs in a PD.

We now compute the probabilities of various patterns

when two spatial MBUs overlap. Let o be the number

of overlapping bits when a spatial qBU hits a word

with k flipped bits. Both patterns are made of

contiguous bits and a PD has a total of N bits. We

compute the probabilities in three cases:

i. If 0 < o = q: There are a total of (k-q+1)C1 cases

because the second qBU must fall into the 1×k

contiguous flipped bit pattern. In this case the fault

size is reduced by q bits. The number of cases that

a qBU falls into N contiguous bits is (N-q+1)C1. The

probability of such cases is:

ὴ ȿ ὴ ȿ

Ὧ ή ρ

ὔ ή ρ
 (7)

ii. If 0 < o < q: For a given o there are only two

possible cases because the qBU must cross the

boundary at the head or tail of the 1×k contiguous

Figu re 5. Markov chains representing the effect of SBUs and MBUs in a 32 -bit word

100 2 ŏŏ 32

(a) SBU only

100 2 ŏŏ 32

(b) SBU and 2BU

00 k ŏŏ 32

(c) SBU and up to mBU

ŏŏ k-1k-21

m

k+2k+1

8

flipped bit pattern, regardless of the value of o.

The probability of such case is:

ὴ ȿ

ς

ς

ὔ ή ρ
 (8)

iii. If o = 0: There is no overlap so the second SEU

falls on non-flipped bits only. In this case the fault

size is increased by q. The probability of such

cases can be obtained from (7) and (8):

ὴ ȿ ὴ ȿ ρ ὴ ȿ (9)

Let’s now build the transition matrix T from the matrix

P and probabilities povl(o|q). Among k faulty bits before

the qBU arrives, k-o bits remain faulty as o bits flipped

back to their correct values. Among the q bits that a

qBU flips, q-o bits become faulty so a total of k+q-2o

bits are faulty after the arrival of the second SEU

(qBU). The transition distance is d = q-2o. d is odd iff

q is odd regardless of k or o. Likewise, d is even iff q is

even regardless of k or o. Thus in the calculation of

each element of matrix T we need to distinguish

between the cases where the transition distance is odd

or even.

We start with a (N+1)×(N+1) zero matrix and then fill

the nonzero elements according to (10).

1) For k = 0 to 2m+1 and |d|≤m:

ừ
Ử
Ử
Ử
Ử
Ừ

Ử
Ử
Ử
Ử
ứ
ÓÔÁÔÅ Ὧ ÔÏ Ὧ Ὠ ȿὨȿ πȡ
ÉÆ Ὧ πȟ
Ὕȟ ὴ

ÅÌÓÅ ÉÆ Ὠ ÉÓ ÅÖÅÎȟ

Ὕȟ ὴ ὴ
ȿ

ᶪ
 ȿȿ ȟ

ÅÌÓÅ ÉÆ Ὠ ÉÓ ÏÄÄȟ

Ὕȟ ὴ ὴ
ȿ

ᶪ

 ȿȿ ȟ

2) Then for "k:

ÓÔÁÔÅ Ὧ ÔÏ Ὧȡ

Ὕȟ ρ Ὕȟ
ᶪ

(10)

where m is the maximum number of flipped bits in an

SEU. Tk,k is the probability that no SEU occurs during

the cycle or, if an SEU occurs, the overlap results in

the same number of faulty bits.

The structure of the (N+1)×(N+1) matrix T is:

ἢ
Ἴ

ἓ
 (11)

where t is a band matrix and I is the identity matrix.

Note that the T is already in a canonical form.

Note that (10) is correct if we observe at most two

SEUs as discussed in Section 3.3.2. The structure of

the transition matrix T takes this into account too. It is

not possible to reach state 2m+1 from state 0 in two

SEUs and therefore states with more than 2m+1 faults

are never visited.

3.4.3 Intrinsic MTTF

With T, we can compute the intrinsic MTTF of a

protected word (PD) by computing the expected first-

passage transition time. The expected first-passage

transition time is the expected number of transitions

from state u to state v given that the chain has started

from state u. The calculation of the expected first-

passage transition time is a well-known problem [16].

3.4.3.1 Intrinsic MTTF without cache scrubbing

In a SEC-protected word, any state k > 1 is a failure

state. Similarly in a DEC and TEC-protected word, any

state k > 2 and k > 3 respectively is a failure state.

Because we measure MTTF from the time a word is

clean, the intrinsic MTTF is the expected first-passage

transition time from state 0 to 2 or above, 3 or above

and 4 or above for SEC, DEC and TEC-protected

words respectively.

In [11], the computation of the expected first-passage

transition time for a finite transient Markov chain is

derived by adding absorbing states. Converting a state

k to an absorbing state in the transition matrix T is

done by setting Tk,k = 1 and Tk,l = 0 if l ≠ k.

Submatrix T' is obtained from T by removing all

columns and rows that correspond to absorbing states,

as shown below.

3%# ÏÎ ×ÏÒÄȡἢȹ
Ὕȟ Ὕȟ
Ὕȟ Ὕȟ

$%# ÏÎ ×ÏÒÄȡἢȹ

Ὕȟ Ὕȟ Ὕȟ
Ὕȟ Ὕȟ Ὕȟ
Ὕȟ Ὕȟ Ὕȟ

4%# ÏÎ ×ÏÒÄȡἢȹ

Ὕȟ Ὕȟ
Ὕȟ Ὕȟ

Ὕȟ Ὕȟ
Ὕȟ Ὕȟ

Ὕȟ Ὕȟ
Ὕȟ Ὕȟ

Ὕȟ Ὕȟ
Ὕȟ Ὕȟ

(12)

With an absorbing Markov chain T, the probability

that a state remains in a transient state monotonically

decreases, and therefore submatrix (T')
t
0 as t∞.

That is, this T' is a transient matrix.

The matrix I-T' has an inverse matrix N and

N=I+T'+(T')
2
+…. Because (T')

t
0 as t∞, N is the

summation of transition probabilities that does not

grow to infinity. Nu,v is the expected number of times

9

the chain is in state v given that it starts in state u

before the chain is absorbed. Matrix N is called a

fundamental matrix of T' and is:

Ἒ ἓ ἢȿ (13)

The expected first-passage transition time, i.e. the

expected time before the chain is absorbed, from any

state can be computed using N by summing all the

expected number of times a chain stays in transient

states before being absorbed:

█ ἚϽ◌

where w is a column vector filled with 1’s.
(14)

f is a column vector and the uppermost element f0 gives

the expected first-passage transition time of the word if

the chain started in the clean state. This measures the

time the chain takes until it reaches an absorbing

(failing) state when it starts in clean state 0. Thus, we

get the intrinsic MTTF of the word in the absence of

scrubbing by multiplying the clock cycle period and f0.

3.4.3.2 Intrinsic MTTF with cache scrubbing

MACAU can model stochastic scrubbing. Let’s say

that L is the mean scrubbing interval. We can include

the scrubbing effect in T in the Markov chain as

follows:

Ὧ ρȟȣȟὺ ÃÏÄÅ ÃÏÒÒÅÃÔÓ ÕÐ ÔÏ ὺ ÂÉÔÓȠ

Ὧ ÔÏ πȡ Ὕȟ Ὕȟ
ρ

ὒ

Ὧ ÔÏ Ὧȡ Ὕȟ ρ Ὕȟ
ᶪ

(15)

For example, if DEC code is used, up to two faulty bits

are correctable by the code. Therefore, v = 2 and 1/L is

added to T1,0 and T2,0. This means that in addition to

the possibilities that a second SEU of size 1×1 or 1×2

exactly hits the already flipped 1 or 2 bits to correct the

faulty bit(s), scrubbing can explicitly correct them.

Then Tk,k should be recalculated so that all the outgoing

probabilities from any state in transition matrix T sum

to 1. After recalculating matrix T, the same procedure

of (12) to (14) is applied to get f0 which then is

multiplied by the processor clock cycle period to get

the intrinsic MTTF.

MACAU models stochastic scrubbing. However it is

applicable to deterministic scrubbing as well since it

has been shown in [23] that the intrinsinc MTTF with

deterministic scrubbing is twice longer than the

intrinsic MTTF with stochastic scrubbing with the

same average scrubbing interval.

3.4.4 Reliability benchmarking

Using the transition matrix T, we calculate hERR(j) at j
th

cycle from (1). If a word whose VCC = t is accessed at

cycle j, we compute hERR(j) by matrix power

calculations S(t) = T
t
. Su,v is the transition probability

from state u to v in t cycles.

hERR(j), the rate of failure of type ERR, is computed

from S(t). For example, if the 32-bit word is not

protected at all, the sum of the transition probabilities

from state 0 to 1, 2, …, and 32 gives the hSDC(j) of that

word. Table 1 shows how MACAU computes hERR(j)

when a word is protected by various schemes. Note

that TRUE DUE or SDC failures happen only when

the word is consumed by the processor, as explained in

Section 3.1 and in [26].

Matrix power calculations S(t) = T
t
 are the major

computation overhead as t can be more than a million

cycles at times [26]. The brute-force computation of T
t

requires O(t) matrix multiplications. We use a well-

known square-and-multiply method [10] to reduce the

number of matrix multiplications to O(log2t).

4. Simulations and results

In this section, we first use MACAU to compute the

intrinsic MTTFs of various caches. Computed intrinsic

MTTFs are compared to results obtained from previous

state-of-the art models. Then, we use MACAU to

benchmark various L2 caches.

4.1 Simulation setup

The target processor designed for a 65nm technology

is a 4-wide out-of-order processor with a 64-entry

ROB, 32-entry Load-Store queue, and McFarling’s

hybrid branch predictor. The processor runs at 3GHz

with 150 cycles of latency to off-chip main memory.

L1-I, L1-D and unified L2 caches all have 32-byte

lines. L1-I is a 32KB direct mapped cache with 2

Table 1 Examples of hERR calculation of various protection schemes from S (t)

Protection No protection Odd parity SECDED DECTED TECQED

ERR SDC DUE SDC DUE SDC DUE SDC DUE SDC

hERR
Ὓȟ

ᶪȟ

 Ὓȟ
ᶪ

 Ὓȟ
ᶪ

 Ὓȟ Ὓȟ
ᶪȟ

 Ὓȟ Ὓȟ
ᶪȟ

 Ὓȟ Ὓȟ
ᶪȟ

10

cycles hit latency. L1-D is a 32KB 4-way set-

associative cache with 3 cycles hit latency. The unified

L2 is a 2MB 8-way set-associative cache with 20

cycles hit latency. All the caches are non-blocking and

write-back. All cache parameters are obtained from

Cacti 5 [29]. In these simulations, we do not add the

extra latency of SECDED, DECTED or TECQED

codes to the L2 cache access latency. Off-chip DRAM

latency is computed from DDR2 specification. Only

L2 is vulnerable and therefore we track ACE cycles

only for L2. The benchmarks are 100M SimPoints [28]

of randomly selected 20 SPEC CPU2K programs with

reference inputs.

4.2 MACAU intrinsic MTTF results

In this section, we show the intrinsic MTTF calculated

by MACAU using the procedure of (12) to (14) (and

(15) if scrubbing is used). In order to verify that

MACAU calculates the intrinsic MTTF correctly, we

compare MACAU’s results with Saleh’s [23] and

Reviriego’s [21] models.

In [23], Saleh et al. model the intrinsic MTTF of a

word-level SEC-protected cache in the presence of

SBUs for SEC-protected caches without and with

scrubbing by closed-form equations (16) and (17):

 7ÉÔÈÏÕÔ ÓÃÒÕÂÂÉÎÇȡ

-44&
ρ

‗

“

ς ὓ

(16)

7ÉÔÈ ÓÔÏÃÈÁÓÔÉÃ ÓÃÒÕÂÂÉÎÇ ÁÔ ÁÖÇ ÉÎÔÅÒÖÁÌ ὒȡ

-44&
ρ

ὓ ὒ ‗

(17)

where λword, M and L are the SEU rate of a word (λword

is equivalent to our pSEU,PD), the number of words in

the cache and the scrubbing interval respectively. In

[21], Reviriego et al. find that the intrinsic MTTF of a

word-level DEC-protected cache under up to 2BUs is

obtained by replacing λword by λ'word in (16) and (17).

‗ȹ ‗ ὴς ς ὴς (18)

where p2 is the fraction of 2BUs among all SEUs.

Table 2 shows the intrinsic MTTFs calculated with

MACAU and with Saleh’s and Reviriego’s models. As

can be seen in the table, the intrinsic MTTFs (without

scrubbing) computed by MACAU broadly agree with

Saleh’s (case of SBUs only) or Reviriego’s (2BUs)

models. The advantage of MACAU is it is a universal

model for the complex cases of mixes of SBUs and

spatial MBUs with multiple dimensions.

Results for scrubbing are also shown in the table for

three scrubbing intervals of once per year, once per

month and once per day. MACAU computes intrinsic

MTTFs that agree with Saleh’s or Reviriego’s model

for SBUs and SBUs plus 2BUs respectively.

One interesting observation is that Reviriego’s model

can also compute the intrinsic MTTF of DEC-

protected caches (although their model only applies to

caches with codes correcting m errors in the presence

of SEUs flipping up to m bits) when SEUs include the

complex mixture of SBUs and MBUs defined by

matrix D. However, Reviriego’s model cannot

correctly compute the intrinsic MTTFs of the DEC-

protected cache when up to 3BUs are existent (see

shaded cells in Table 2). Because of 3BUs, caches

protected by DEC codes fail more frequently.

Reviriego’s simple model fails to quantify them since

this situation goes beyond the capability of the model

by breaking the basic assumption that the protection

codes used are powerful enough to correct all the faults

due to a single SEU. MACAU and Reviriego are again

in broad agreement for MBUs given by matrix D under

TEC code.

4.3 MACAU benchmarking results

In this section, we show benchmarking results for 2MB

caches protected by various schemes (no-protection,

odd-parity, SECDED, DECTED and TECQED)

obtained with MACAU. Table 3 summarizes the

benchmarking results for the 2MB cache that is

Table 2 Intrinsic MTTF in years with and without scrubbing

SEUs Protection on a word Model
32b-word

No scrub Once/year Once/month Once/day

SBUs only SEC
MACAU 6.715E+06 1.092E+13 1.329E+14 3.986E+15

Saleh 6.245E+06 1.058E+13 1.287E+14 3.862E+15

1BU+2BU (0.5:0.5) DEC
MACAU 8.012E+06 1.593E+13 1.938E+14 5.813E+15

Reviriego 7.211E+06 1.411E+13 1.716E+14 5.149E+15

D in (5)

DEC
MACAU 9.700E+06 1.153E+08 1.153E+08 1.153E+08

Reviriego 8.748E+06 N/A N/A N/A

TEC
MACAU 1.330E+07 1.815E+14 2.209E+15 6.626E+16

Reviriego 1.700E+07 1.839E+14 2.238E+15 6.713E+16

11

unprotected or protected by odd-parity, SECDED,

DECTED or TECQED code when SBUs and spatial

MBUs coexist as in Figure 2. Averages of the

benchmarking results were obtained using (3).

Modified sim-outorder [6] was used for benchmarking.

We compared MACAU’s benchmarking results with

PARMA’s results for cases with SBUs only, since

PARMA can only model SBUs and temporal MBUs.

Among 20 results, six have at most a 0.015%

difference in FIT rates for the 2MB SECDED

protected caches. FIT rate results for other benchmarks

match down to five digits below the decimal point. We

believe the differences are due to floating-point

rounding errors. We used IEEE double precision

representation for floating-point numbers in the

simulations.

In general, when 3BUs exist it is commonly believed

that the TECQED code or some equivalently strong

protection code should be used to mask failures.

However, the results in Table 3 suggest that, although

there are 3BUs among the spatial MBUs, DECTED

code can suppress DUEs and SDCs efficiently. If

strong protection schemes like TECQED do not meet

area or performance budgets, lowering the protection

strength to DECTED may be acceptable given the

typical reliability budget of today’s chips as the one in

[4]. With the MACAU framework, designers can

benchmark caches to choose the best protection

scheme among many design choices when SBUs and

spatial MBUs coexist.

5. Extending MACAU to several SEUs

The current version of MACAU assumes no more than

two SEUs on the same word between two accesses to it.

One important assumption in MACAU is that one SEU

flips bits in a contiguous 1×k rectangular pattern. Thus

after one SEU to a word, the fault pattern is contiguous.

However, after two SEUs the resulting fault pattern in

the word may be disconnected because of overlap.

Thus the state of the fault cannot simply be represented

by the number of faulty bits, a basic premise of

MACAU’s Markov chain model. However, we can

easily extend MACAU to more than two SEUs by

making the approximation that, if the word has k faulty

bits when a new SEU hits, the fault pattern is always

1×k, regardless of the number of SEUs that led to this

pattern.

We extended the MACAU model to deal with more

than two SEUs by allowing errors that are practically

unobservable. The FIT rate results we obtained by

using the matrix T in (10) and the complex matrix T

built after this extension match down to 10 decimal

points.

6. Conclusion

In this paper, we demonstrate a new soft-error

benchmarking framework called MACAU. MACAU is

a Markov chain model for the soft failures of memory

structures when an SEU can be an SBU or a spatial

MBU. Given current experimental data on the shape

and probabilities of spatial MBUs, MACAU assumes

that spatial MBU patterns are compact and that at most

two SEUs can affect a word. However with some

approximations (all overestimations of FIT) , MACAU

can cover situations with several spatial MBUs.

MACAU can calculate the intrinsic MTTF of caches

with and without scrubbing and it can also realistically

benchmark the soft-error reliability of caches for

specific programs. Therefore, MACAU can be used by

circuit designers and computer architects alike to

quantify and qualify the reliability of caches during the

design process. To the best of our knowledge,

MACAU is the only framework that addresses the

effect of SBUs and spatial MBUs together to calculate

intrinsic MTTFs and benchmark various cache designs.

Currently MACAU is developed for word-level

protection schemes. Several recent studies [15][26]

suggest that increasing the size of the protection

domain is preferable because SEU rates are currently

very low in realistic environments. Modeling TAG

vulnerability is another challenging topic. How to deal

with cache TAGs, PDs larger than a word or edge

effects will be part of our future work.

7. Acknowledgments

This material is based upon work supported by the

National Science Foundation under Grants No. CNS-

0834798, CNS-0834799 and CCF-0954211.

8. References

[1] H. Asadi, V. Sridharan, M.B. Tahoori, and D. Kaeli.

“Vulnerability analysis of L2 cache elements to single

event upsets,” In Proceedings of the Conference on

Design, Automation and Test in Europe. 1276-1281,

Mar 2006.

Table 3 Average benchmarking results when SBUs and spatial MBUs coexist (FITs)

 No protection Odd-parity SECDED DECTED TECQED

DUE
TRUE -- 1217.840 110.872 37.614 7.3947E-16

FALSE -- 2448.644 222.923 75.629 1.3724E-15

SDC 1328.711 110.872 37.614 8.0925E-16 6.9784E-17

12

[2] S. Baeg, S. Wen, R. Wong, “SRAM Interleaving

Distance Selection With a Soft Error Failure Model,” In

IEEE Transactions on Nuclear Science, 56(4), 2111-

2118, Aug 2009

[3] M.A. Bajura, Y. Boulghassoul, R. Naseer, S. DasGupta,

A.F. Witulski, J. Sondeen, S.D. Stansberry, J. Draper,

L.W. Massengill, J.N. Damoulakis. “Models and

Algorithmic Limits for an ECC-Based Approach to

Hardening Sub-100-nm SRAMs,” In IEEE Transactions

on Nuclear Science, 54(4), 935-945, 2007.

[4] Bossen, D. C. “CMOS Soft Errors and Server Design.

IEEE 2002 Reliability Physics Tutorial Notes,”

Reliability Fundamentals 121 (2002), 07-1.

[5] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S.

Mukherjee, and R. Rangan. “Computing Architectural

Vulnerability Factors for Address-Based Structures,” In

Proceedings of the International Symposium on

Computer Architecture, 532-543, June 2005.

[6] D. Burger and T. M. Austin. The SimpleScalar Tool Set

Version 2.0. Technical Report 1342, Computer Sciences

Department, University of Wisconsin--Madison, May

1997.

[7] D. Ernst, N. Kim, S. Das, S. Pant, R. Rao, T. Pham, C.

Ziesler, D. Blaauw, T. Austin, K. Flautner, and T.

Mudge. “Razor: a low-power pipeline based on circuit-

level timing speculation,” In Proceedings of the 36th

International Symposium on Microarchitecture, 7-18,

2003.

[8] K. Flautner, N.S. Kim, S. Martin, D. Blaauw, and T.

Mudge. “Drowsy caches: simple techniques for

reducing leakage power,” In Proceedings of the 29th

International Symposium on Computer Architecture,

148-157, 2002.

[9] G. Georgakos, P. Huber, M. Ostermayr, E. Amirante, F.

Ruckerbauer, “Investigation of Increased Multi-Bit

Failure Rate Due to Neutron Induced SEU in Advanced

Embedded SRAMs,” 2007 IEEE Symposium on VLSI

Circuits. 2007-01-01;80-81.

[10] D. M. Gordon, “A Survey of Fast Exponentiation

Methods,” Journal of Algorithms, 129-146, 1998.

[11] C. H. Grinstead, J. L. Snell, “Introduction to Probability,

2nd Edition,” American Mathematical Society, 452-461

[12] E. Ibe, S.S. Chung, S. Wen, H Yamaguchi, Y Yahagi, H

Kameyama, S Yamamoto, T Akioka, “Spreading

Diversity in Multi-cell Neutron-Induced Upsets with

Device Scaling,” Custom Integrated Circuits Conference,

2006. CICC '06. IEEE, 437-444, Sep. 2006

[13] M. Li, P. Ramachandran, R.U. Karpuzcu, S.K.S Hari, S.

Adve. “Accurate Microarchitecture-Level Fault

Modeling for Studying Hardware Faults,” In

Proceedings of the International Conference on High

Performance Computer Architecture, 105-116, 2009.

[14] Mahatme, N.; Bhuva, B.; Fang, Y.; Oates, A.; ,

“Analysis of multiple cell upsets due to neutrons in

SRAMs for a Deep-N-well process,” Reliability Physics

Symposium (IRPS), 2011 IEEE International. SE.7.1-6,

Apr 2011

[15] M. Manoochehri, M. Annavaram, M. Dubois. “CPPC:

Correctable Parity Protected Cache,” In Proceedings of

the 38th International Symposium on Computer

Architecture, 2011

[16] Meyer C.D. Jr. (1978). “An alternative expression for

the mean first passage time matrix,” Linear Algebra

Appl., 22, 41-47.

[17] Zhu Ming; Xiao Li Yi; Liu Chang; Zhang Jian Wei; ,

“Reliability of Memories Protected by Multibit Error

Correction Codes Against MBUs,” In IEEE

Transactions on Nuclear Science, 58 (1), 289-295, Feb.

2011

[18] S. S. Mukherjee, J. Emer, T. Fossum, and S. K.

Reinhardt. “Cache Scrubbing in Microprocessors: Myth

or Necessity?” In Proceedings of the 10th IEEE Pacific

Rim Symposium on Dependable Computing, 37-42,

2004.

[19] R. Naseer, Y. Boulghassoul, J. Draper, S. DasGupta, A.

Witulski. “Critical Charge Characterization for Soft

Error Rate Modeling in 90nm SRAM,” In Proceedings

of the IEEE Symposium on Circuits and Systems, 1879-

1882, 2007.

[20] OpenMP, https://computing.llnl.gov/tutorials/openMP/

[21] Reviriego, P.; Maestro, J.A., “Study of the Effects of

Multibit Error Correction Codes on the Reliability of

Memories in the Presence of MBUs,” In IEEE

Transactions on Device and Materials Reliability, 9(1),

31-39, Mar 2009

[22] M. Sahinoglu. “Compound-Poisson Software Reliability

Model,” IEEE Trans. Softw. Eng. 18, 624-630, Jul 1992

[23] A.M. Saleh, J.J. Serrano, and J.H. Patel. “Reliability of

Scrubbing Recovery Techniques for Memory Systems,”

In IEEE Transactions on Reliability, 39(1), 114-122,

1990.

[24] Seifert, N.; Gill, B.; Foley, K.; Relangi, P.; “Multi-cell

upset probabilities of 45nm high-k + metal gate SRAM

devices in terrestrial and space environments,” In

Proceedings of the IEEE International Reliability

Physics Symposium,181-186, 2008

[25] Semiconductor Industries Association. International

Technology Roadmap for Semiconductors. 2007.

[26] J. Suh, M. Manoochehri, M. Annavaram, M. Dubois.

“Soft error benchmarking of L2 caches with PARMA,”

In Proceedings of the ACM SIGMETRICS joint

international conference on Measurement and modeling

of computer systems (SIGMETRICS '11).

[27] Tipton, A.D.; Pellish, J.A.; Hutson, J.M.; Baumann, R.;

Deng, X.; Marshall, A.; Xapsos, M.A.; Kim, H.S.;

Friendlich, M.R.; Campola, M.J.; Seidleck, C.M.;

LaBel, K.A.; Mendenhall, M.H.; Reed, R.A.; Schrimpf,

R.D.; Weller, R.A.; Black, J.D.; , “Device-Orientation

Effects on Multiple-Bit Upset in 65 nm SRAMs,” In

IEEE Transactions on Nuclear Science, 55(6), 2880-

2885, Dec. 2008

[28] T. Sherwood, E. Perelman, G. Hamerly and B. Calder.

“Automatically Characterizing Large Scale Program

Behavior,” In Proceedings of the International

Conference on Architectural Support for Programming

Languages and Operating Systems, 45-57 Oct 2002.

[29] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P.

Jouppi. Cacti 5.1. Technical Report HPL-2008-20,

Hewlett-Packard Development Company, Apr 2008.

https://computing.llnl.gov/tutorials/openMP/

