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Abstract

Dynamic power management has become an essen-
tial part of multi-core processors and associated systems.
Dedicated controllers with embedded power management
firmware are now an integral part of design in such multi-
core server systems. Devising a robust power management
policy that meets system-intended functionality across a di-
verse range of workloads remains a key challenge. One of
the primary issues of concern in architecting a power man-
agement policy is that of performance degradation beyond a
specified limit. A secondary issue is that of negative power
savings. Guarding against such “holes” in the management
policy is crucial in order to ensure successful deployment
and use in real customer environments. It is also impor-
tant to focus on developing new models and addressing the
limitations of current modeling infrastructure, in analyzing
alternate management policies during the design of modern
multi-core systems. In this concept paper, we highlight the
above specific challenges that are faced today by the server
chip and system design industry in the area of power man-
agement.

1. Introduction

Dynamic power management has now become a primary
focus in multi-core systems . Multi-core systems are com-
monly deployed in the data centers as servers, an area that is
experiencing tremendous growth. Most of these servers are
on average only 10-50% [2, 3] utilized and yet due to lack
of energy proportionality they consume significant fraction
of the peak power. Hence, these servers exhibit significant
energy-inefficiency. US Environment Protection Agency
has also voiced its concerns to the Congress about the grow-
ing energy-inefficieny of data centers[16]. Therefore, it has
become increasingly important to improve the power effi-
ciency of these server systems [12, 14]. To date dynamic
voltage and frequency scaling (DVFES) continues to be one
of the most successfully deployed power management tech-
niques. However, the dynamic range of (voltage-frequency)
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operational points is getting smaller, with the supply volt-
age (Vyq) scaling closer towards threshold voltage. As the
effectiveness of DVFS decreases, predictive power-gating
is emerging as an increasingly important actuation knob in
chip-level dynamic power management.

Power gating is a circuit-level technique that enables
one to cut off the power supply to a logic macro. Power-
gating can be applied either at the unit-level, such as ALUs,
pipeline stages [5, 8, 18] or at the core-level [7]. It is im-
plemented with the help of a sleep transistor (“switch”) that
is inserted as a series header or footer device in the V4-to-
Ground circuit path that includes the targeted macro. With
the help of microarchitectural predictive control, such gat-
ing is effected, when it is deemed that the macro is likely to
be idle for a relatively long duration. Recently, Intel’s Ne-
halem processor family [1] has made per-core power gating
available as a power management facility within a multi-
core processor chip setting.

While predictive power-gating is a promising control
knob for power management, it suffers from some seri-
ous limitations. With frequent mis-predictions, it can lead
to significant negative impact on power-performance, since
there are overheads for switching on and off a gated macro.
Depending on the size of the macro that is targeted for
power gating, the overhead in terms of “wake-up” latency or
the power cost for turning it back “on” from a “gated off”
state may be quite significant. In prior work, Hu et al.[5]
have discussed the overhead costs of the power gating pro-
cess in some detail, and have described ways of quantifying
the so-called “breakeven point” (BEP) in terms of circuit
and technology parameters. Figure 1 illustrates the concept
of BEP. As shown in the figure, BEP stands for the mini-
mum number of consecutive processor execution cycles that
the gated macro needs to remain in idle state (before being
woken up back to active state), in order to ensure a net pos-
itive power savings. If the wake-up occurs before BEP, it
results in negative power savings. Lungu et al. [8] propose
the use of “guard” mechanisms to detect the onset of such
“negative benefit” scenarios, so that the main power-gating
algorithm can itself be disabled in time to avoid a net in-
crease in system power. This work was however limited to
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unit-level power gating within a single core. We find that
the per-core power-gating algorithms are also prone to sim-
ilar vulnerabilities and would require guard-mechanisms as
well to prevent such negative benefit scenarios.

We demonstrate that no matter how robust the baseline
power gating algorithm is, it is still possible to fool the algo-
rithm and suffer from either significant performance loss or
increased core switching on/off activity that ends up dissi-
pating more power or cause reliability failures. We advocate
the need for guard mechanisms that can disable the power
manager in the event of malicious power virus attack, an
unpredictable workload behavior or workloads that exhibit
periodic behavior that are in sync with the power manage-
ment control time granularity. The power manager can be
enabled back on when the system is in a stable state again.
While we highlight the need for guarded power-gating, the
concept of guarded power management is applicable to any
dynamic power management policy. We hope this concept
paper will motivate the research community to invent ro-
bust guard mechanisms that provide quality guarantees in
dynamic power management. The paper is a refinement of
preliminary ideas presented at a recent workshop [11].

In this paper, we also highlight the modeling challenges
for power-management heuristics for many-core systems
especially in the context of data center workloads. Queue-
ing model based evaluation of data center workloads is gain-
ing traction in the research community [4, 13]. We share
our experience with such an analytical model and suggest
approaches to improve its accuracy and real-workload rep-
resentation.

The paper is organized as follows. We first describe our
modeling framework and its limitations in Section 2 and
then discuss the power-gating algorithms in Section 3 . We
make a case for a guard mechanism in Section 4, and finally
highlight the future research directions in Section 5.

2. Queueing Theory Based Analytical Model

Cycle-accurate full-system performance simulators do
not scale well beyond a few tens of processor cores at best.
As such, analytical models based on the theory of queueing
systems, are a logical choice for developing a basic under-
standing of the fundamental tradeoffs in future, large-scale
multi-core systems. Such a model can be easily applied to
data center workloads that are represented by a continuous
arrival stream of user tasks that wait in queue before be-
ing assigned to servers. An analytical model of this type is
fast enough, that even when we study a many-core system
with hundreds of cores, the speed of computation is quite
manageable. Another issue with modeling of power man-
agement algorithms is the interaction with operating system
(OS) scheduling policies. In a queueing model, we are able
to easily add OS-appropriate time-slice support in order to
enable more realistic power management scenarios. Our
particular model is designed to support a generalized G/G/k
queueing system. Figure 2 depicts the high-level overview
of a simple queueing model, called Qute (Queueing based
timing estimator) that has been implemented in C/C++ for
the purposes of this study.

2.1. Model Overview

The model uses a centralized task arrival queue. The task
arrival process can be modeled using any arrival distribu-
tion of choice: e.g. either the well-known Poisson process
(with exponentially distributed inter-arrival time distances)
or even the one derived empirically from a real, measured
task arrival process at a server node. For the purposes of
this paper, we assume a Poisson arrival process. Tasks are
issued from the head of the central queue to waiting cores
in a round robin fashion. Each core services an assigned
task for a pre-determined time slice effectively modeling
the OS time-quanta (which is a model parameter). If the
task does not complete within that time slice then the core
simply queues the task back to the tail of the centralized
queue. A given task is removed from the queue once it is
completed. Each task may require several time slices of pro-
cessing depending upon its length. Task lengths (i.e. time
durations) can either be picked from a user-specified prob-
ability distribution: e.g. Gaussian or we can use empirical
data from real workload traces. There is also monitoring
code in our model to keep track of the average number of
utilized cores, the onset and duration of idle periods in each
core and system utilization for simulating per-core power
gating heuristic. Qute’s task arrival queue effectively mod-
els the load balancer in a datacenter, where the load balancer
receives a number of requests from clients which are in turn
assigned to cores for service.

We use “Average Response Time” derived from our ana-
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lytical model as the metric for evaluating performance. Our
model computes the response time as the total time it takes
from the task’s arrival in the task queue to its completion.
As far as the power model is concerned, we just keep track
of the number of cores powered off as a fraction of the to-
tal number of cores, to estimate the power savings for any
given power gating algorithm.

Table 1 shows the simulation parameters used for our
experiments. All experiments run 1 million tasks which
is long enough to reach a steady-state environment in our
queueing model. We chose some of the parameters such as
number of cores (N), mean inter-arrival time and mean task
length such that our given queueing model is moderately
utilized. The analytical system utilization is computed in
the queueing theory using the following equation:

SystemUtilization(SU) = A/(u * N) (1)

where A is the mean arrival rate and y is the mean task rate
and N is the number of servers (i.e. processor cores). For
our values of A = 1/400us , N = 256 and p=1/50ms, the
system utilization is 0.5. We can model different utiliza-
tion levels in the system by varying the mean inter-arrival
arrival time. Note that using this equation, it is possible to
have utilization value higher than 1.0. Such a high value
of utilization implies that all the cores are fully utilized and
running tasks but there are several tasks queued up in the
task queue.

We assume core wake-up latency (OnLat) = 1ms for
most experiments unless specified. Core wake-up will re-
quire a combination of hardware/software enablements. It
has been shown that core wake-up latency in linux can be
as high as 100ms [7] as it also includes the time to desched-
ule all running processes, servicing pending interrupts and
flushing caches. Therefore, in our sensitivity studies, we do
consider the performance impact of a software enabled core

Number of Tasks (M) 1000000
Number of Cores (N) 256
Mean Task Length 50ms
Mean Service time Distr Gaussian
Mean Inter-Arrival time 400 ps
Mean Inter-Arrival Rate Distr | Exponential
Time Slice 10 ms
Wake-up latency (OnLat) 1 ms

Table 1. Experiment Parameters

wake-up.
2.2. Model Limitations

We next discuss the limitations of our statistical model
and approaches to improve its fidelity, beyond the concept-
building purpose of this particular paper.

* Real data center workload representation: While sta-
tistical workloads can be quite adequate for early stage
analysis and design tradeoff studies, they may not be
able to capture a real data center workload environ-
ment with full fidelity. This problem can be partly
overcome by doing offline analysis of data center
traces and using those empirical values in the model.
We can augment this model by integrating it with real
server utilization traces. We can reconstruct the mea-
sured arrival rate if we know the cpu utilization as
shown in equation (1). By adopting this methodology,
we can have a real data center utilization behavior. The
mean task length can still be a statistical parameter in
the model.

* Modeling fine-grain workload phases: The current an-
alytical model assumes that a core is a black-box and
simply executes the assigned task for a given time-
slice. The core is not able to see fine-grain work-



load behavior such as cache misses, functional unit
idle times etc. when it executes a task. Without this
workload behavior view, we can not model within-core
power management schemes such as DVFS or unit-
level power-gating. One way to approach this is to as-
sume that within a given time-slice, there are phase be-
havior distributions for unit idle times and cache miss
rates. In [11], we modeled a statistical distribution
for the length of time a core is in high power or low
power state for studying unit-level power gating. We
can improve this methodology further by incorporat-
ing each execution unit’s idle-time histograms that can
be obtained from cycle-accurate performance models.
To model DVFS power states, we can integrate the
model with a benchmark’s DVFS state traces. These
traces can be collected based on the methodology in
[6, 15] where memory accesses per instruction com-
pleted (MPI) measurements are used to define state
boundaries when a workload executes on a real sys-
tem.

* Power model: We use a very simplistic power model,
in making the basic arguments in this paper. In partic-
ular, the overhead power due to core wakeups can and
should be estimated carefully, by taking into account
the electrical power-on characteristics of the specific
core-level power gating implementation.

3. Proposed Power Gating Heuristics

In this section we describe and evaluate the two baseline
per-core power gating algorithms that we have explored.
3.1. Idleness-Triggered Per-core Power
Gating (IdlePG)

In this heuristic, we monitor the idle duration in all cores.
If a core has been idle for a pre-determined cycles or thresh-
old Cr, we initiate the predictive gating off of this core. We
assume that there is a global manager that wakes these cores
up if it finds that there are tasks waiting to be executed. This
is a very simple heuristic that does not suffer from much
performance degradation as it quickly reacts to system load.
If we choose a lower value of C'r, we get more power sav-
ings at the cost of increased performance degradation due
to more frequent core wake-ups. The key parameters in this
heuristic are the C'r that determines the power saving po-
tential and OnLat that determines performance degradation
(and consequently potential negative power savings) due to
core wake-up latency.

Figures 3 and 4 show the sensitivity analysis results for
this heuristic when we vary either the C'r or the OnLat
parameter. The results are normalized to a baseline that
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does not have any power-management policy. As expected,
lower the idleness threshold, greater the power savings and
higher the number of core wake-ups. For our chosen param-
eters, we find that the idleness threshold of 2ms yields high
power savings at a moderate number of core wake-ups. The
third set of experiments show sensitivity to OnLat if Cr is
set to 2ms. We find that the performance degrades by 8.4%
as OnLat increases to 100ms.

3.2. Utilization-based Per-core Power Gat-
ing(UtilPG)

In this heuristic, we sample system utilization every time
window which is a parameter in our model (UWIN). We
measure system utilization by using the following equation:

Utilization = (Number_of _busy_cores+
Task@ _entries)/Total cores
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We compute target number of cores that are required to
be switched on in that interval as a function of utilization

(utilization + n) x Total_cores

We always provision for an extra n% cores to be on to han-
dle unexpected changes in system load in that interval. If
target number of cores is higher than the actual number of
cores on then we wake up the required number of cores oth-
erwise we switch the corresponding number of cores off. If
the target is the same as the current number of awake cores,
we remain in that state. This heuristic is more conservative
in saving power as it always provisions for extra cores to
be on in each time window. If the time-window UW IN is
very long then we may end up hurting performance if the
system utilization changes in the middle of a time window.

Figures 5 and 6 show the sensitivity analysis results
when UWIN and OnLat are varied. We assume n = 5% in
these experiments. We normalize these results to a baseline

PG Heuristic Normalized Normalized Number of
Response Power Core

Time Consumption ‘Wake-ups

(M = 1 million
tasks)
1dlePG 1.000 0.534 37760
(Cr =2ms)
UtiIPG 1.026 0.532 23780
(UWIN = 100ms)

Table 2. Comparison of IdlePG and UtilPG for
OnLat = 1ms (Results Normalized to a Base-
line With No Power Management)

that does not implement power gating. We find that both
the response time of the system and power savings are very
sensitive to UW IN. If the utilization time window is very
long where UWIN = 1s, then the performance degrada-
tion can be as high as 11%. The number of core wake-ups
is also dependent upon UWIN. If UWIN is short, then
there is more opportunity to switch cores on/off. Utilization
window of 100ms represents an ideal point for these statisti-
cal distribution values that gives decent power savings with
an acceptable number of core wake-ups. We find that very
high core wake-up latencies can degrade performance by up
to 9% as in the case of 1dlePG heuristic.

3.3. Discussion

Table 2 compares the two power gating heuristics nor-
malized to a baseline that does not have any power gating.
In general, IdlePG demonstrates better power-performance
trade-offs when compared to UtilPG. But in terms of the
overheads of core wake-ups, UtilPG has superior behav-
ior. In terms of implementation complexity, UtilPG can
be implemented in software, with only a small amount of
hardware support in the form of providing runtime power
monitoring facilities (e.g. [6]; see also the power proxy ar-
chitecture description for POWER7[17] ). However, such
a centralized power management algorithm may be funda-
mentally limited by scalability (in terms of the number of
processor cores, N). As N increases, the sense-and-actuate
control loop tends to be limited by the bandwidth require-
ments of per-core and system-wide sensing of power and
utilization metrics. Similarly, the verification complexity
of such a global, multi/many-core power management pro-
tocol tends to blow up exponentially with N [9]. On the
other hand, IdlePG relies on local utilization for predict-
ing power gating, and such control can be implemented
in hardware through a simple state machine controller per
core. The power-performance benefits and the verification
complexity, scale linearly with N in such a scenario in the
ideal case. However, when it comes to per-core power gat-
ing, it is not possible to rely entirely on an autonomous,




distributed hardware controller only. System software (i.e.
the OS and hypervisor) must be involved in any decisions
about turning off cores or powering up idle cores. Thus,
even in the case of IdlePG, there will be a component of the
power management algorithm that is ”global” and imple-
mented in software. Overall, the engineering challenge is to
find the right balance between hardware support and soft-
ware control, that provides an acceptable degree of power-
performance scalability, while keeping the verification com-
plexity under practical limits. In practice, therefore, some
kind of a hybrid power gating algorithm that uses elements
of the UtilPG and IdlePG concepts may prove to be most
beneficial as a baseline power manager. Later in this pa-
per, we bring in another dimension of the problem: namely,
robustness of the power gating algorithm, when it comes
to natural or maliciously-induced workload variations. For
the scenarios explored, we show that IdlePG is more robust
than UtilPG. Of course, this paper represents an initial study
of the fundamentals of core-level power gating; we do not
claim to have covered the entire feasible design space of
such algorithms.

4. A Case for Guard Mechanism

In this section, we examine the power gating heuristics
described in the previous section and study their behavior
towards certain workload conditions that make these heuris-
tics vulnerable to power-overruns or severe performance
degradation. There may be multiple ways to break these
robust power gating algorithms but we focus on one obvi-
ous case where the workload task arrival pattern exhibits a
periodic loop. This kind of workload behavior could either
be deliberate in the form of power-virus attack or it could
simply be the real nature of that workload. We expect that
data center workloads typically have long periods of low
utilization or a certain steady arrival rate followed by bursty
high utilization periods. There may be a loop kind of a pat-
tern even in data center workloads and even if that is the
case, we believe that it may not be safe for servers to ac-
tuate their power-gating knobs. We will construct this sce-
nario for each of the two baseline power gating algorithms
and make a case for guard mechanism.

4.1. Vulnerability Example of Idle-triggered
Power Gating Heuristic

Figure 7 shows how our baseline idle-triggered heuris-
tic would react to a system load that is changing periodi-
cally. The task inter-arrival time is toggling between 200.s
and 3000us with a period of 50ms and our power gating
algorithm’s period is 2ms based on C'r. As shown in this
plot, when the power gating algorithm reacts to the system
load by switching on cores, the system utilization changes

again due to change in mean inter-arrival time. This causes
repeated switching on and off of cores that is highly un-
desirable and may cause negative power savings. Figure 8
shows the performance degradation caused by our power
gating algorithm as a function of different core switch-on
latencies. If we assume a rather aggressive value for the
overhead (1ms) based on a hardware-centric approach to
power gating then the performance impact is not much but
the number of core wake-ups is 21X the baseline. However,
if we assume a very high latency such as 100ms and if the
software does the core wake-up then the performance degra-
dation can be as high as 108%. Note that the number of
wake-ups decreases as the wake-up latency increases. This
happens because the cores are not idling for the duration
they are experiencing waking up delays.

4.2. Vulnerability Example of Utilization-
based Power Gating Heuristic

Figure 9 illustrates how the utilization-based power gat-
ing heuristic reacts to a periodically toggling system load.
We consider an extreme case in this example where the tog-
gling period of inter-arrival time is the same as our uti-
lization time window (UWIN). When a new time win-
dow begins, the power gating manager decides to switch off
on average 216 cores based on current low utilization level
(5%) and inter-arrival time of 3000us. Once the cores are
switched off, the inter-arrival time decreases to 200us and
the utilization increases to almost 100%. This requires the
cores to be woken up in the next time window. We again
toggle and increase the mean arrival time to 3000us caus-
ing the utilization to drop. This results in incorrect power
gating decisions to take place at the start of each utiliza-
tion time window. As expected in this scenario, there will
be significant performance penalty as the number of cores
available remain the same for the duration of UWIN. Fig-
ure 10 shows the normalized response times for different
core switch-on (OnLat) latencies when compared to a base-
line utilization-based heuristic that is experiencing steady
arrival rate. We find that the utilization-based heuristic suf-
fers from performance degradation as high as 100% for even
a conservative OnLat value of 1ms. The degradation can be
208% for a very high OnLat latency.

The abovementioned case study demonstrates that the
utilization-based heuristic is less robust when compared to
the idlePG heuristic. To improve the robustness of the base-
line UtilPG heuristic, we added a history-based enhance-
ment to the heuristic. We observed that adding some level
of utilization history does reduce the degree of performance
degradation during unsafe workload conditions but it still
does not eliminate the problem. For lack of space, we do
not present the history-based enhancement ideas in full de-
tail in this paper.
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4.3. Guard Mechanism

We have discussed how both the baseline power gating
heuristics (IdlePG and UtilPG) are vulnerable to holes trig-
gered by spontaneous or malicious “corner-case” workload
patterns. The net effect of such holes is to make the un-
derlying machine susceptible to large, unpredictable perfor-
mance degradation and/or negative power savings. We find
that IdlePG is more robust than UtilPG, since the perfor-
mance degrades more gracefully in the former case. There
are two approaches to solve the problem of algorithm ro-
bustness in such a scenario.

The first approach is to try to improve and enhance the
baseline algorithm to the extent that the number of poten-
tial “holes” is minimized, possibly to zero. The problem
with this approach is that it is hard or impossible to antici-
pate all workload scenarios for a multi/many-core platform;
hence, devising a provably robust algorithm that is guaran-
teed to work without manifesting any vulnerable “hole” is
very difficult.

The second approach is to devise a “guard” mechanism
that watches over the baseline algorithm and takes protec-
tive actions to prevent unwanted machine behavior. The
easiest protective action would be to disable the baseline
algorithm completely. This would, by construction, prevent
any drastic loss of performance or an unbounded increase
in power consumption. In this paper, we make a case for
this latter class of “guard” mechanisms. We envisage such
two-level, guarded management protocols to provide qual-
ity guarantees that a baseline algorithm cannot.

Apart from quality guarantees, a guard mechanism may
help even in reducing the overall verification complexity of
the power gating algorithm. A highly sophisticated baseline
algorithm that anticipates corner case scenarios and pro-
vides built-in safeguards, will require very elaborate veri-
fication methods to make sure that all possible corner cases
have been adequately covered. In contrast, having a guard
mechanism obviates the need for a very sophisticated base-
line management algorithm. The latter can, in fact, be a
very simple one, that is designed without having to worry
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about rare corner case scenarios. The guard mechanism just
looks for “problem” behaviors at the machine level, without
having to worry about the inner details of how the baseline
algorithm actually works. If the machine behavioral signa-
tures trigger an alarm, the guard simply disables the base-
line power manager. Thus designed, the guard mechanism
is portable across alternate versions of the baseline man-
agement algorithm. Since both the baseline and the guard
algorithms are relatively simple, the overall pre-silicon ver-
ification complexity is likely to be significantly less than
that required for a very sophisticated, all-protective base-
line management algorithm.

In recent prior work, Lungu et al. [9, 10] have trail-
blazed a visionary set of ideas about how to design microar-
chitectures and associated power management algorithms
with verification cost in mind from the very outset. In par-
ticular, the work in [9] discusses the verification cost for
multi-core power management (DVES) algorithms. It is
shown that centralized (“‘global”’) DVFES control algorithms
increase exponentially with the number of cores, N, when it
comes to verification cost. Also, such complexity explodes

UtilPG with Steady Mean Inter-arrival time

as the number of valid voltage-frequency steps increases.
We would therefore expect that the verification complexity
of multi-core power-gating algorithms is bounded to rea-
sonable levels since there are only two power states: ON
and OFF. Nonetheless, as already discussed in section 3.3,
the challenge of verifying a power gating algorithm as it
scales to increasing number of cores, is still of huge con-
cern. Therefore, as indicated above, the promise of guarded,
two-level management algorithms in curbing the verifica-
tion complexity curve for multi- and many-core platforms,
is an attractive proposition.

Finally, we would like to point towards recommended
guard mechanism architectures.  Figure 11 illustrates
how we envisage the guard mechanism’s embodiment.
Guard mechanism should have monitors that sense negative
power savings or performance degradation beyond a certain
threshold. These monitors can be implemented at either the
hardware or software level. If frequent violations are de-
tected, then the guard mechanism should be able to disable
the power manager. We may also need a monitor that is
able to sense when to enable back the power manager if
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Figure 11. Guard Mechanism

the workload conditions change and become stable again.
The other alternative is to support a very large time-out and
re-enable back the power manager. If we are frequently en-
abling/disabling the power manager then the guard mecha-
nism needs to inform the system administrator of a possible
malicious power virus attack or unsafe workload conditions
for power management. The sampling intervals of the var-
ious monitors also play a significant role in correct work-
ing of guard mechanism. We propose one sample guard
mechanism that can help detect these violations especially
in the utilization-based power gating heuristic. We propose
having two monitors in this approach, a task-queue mon-
itor and a utilization monitor. We monitor the task queue
to see if there are enough tasks waiting for cores to be free
while there are several cores that are switched-off. Under
normal load circumstances, this scenario should not occur
for a long duration. We monitor the task queue at a finer
granularity than the utilization time window UW IN and if
the queue is filling up beyond a certain threshold for a long
enough period, we disable the power manager. To enable
back the power manager, we monitor the system utilization
at the same granularity as UW IN. If the system utilization
is in a steady state and not changing frequently, we enable
the power manager.

5. Conclusions and Future Work

In this paper, we present a new challenge being faced
in the systems industry. Even though many future proces-
sor and system products are expected to have some form
of dynamic power management policy, there is no guaran-
tee that the policy will work well when actually deployed
in the field. We show how even the most robust baseline
dynamic power gating heuristics can fail to provide power-
performance guarantees.

We would like to encourage the academic research com-

munity to explore the following research directions in ad-
vancing the state of the art in power management:

» Continue to explore power management policies that
especially scale well as the number of cores increase in
future technology generations. We also need to make
these power management policies more robust. It is
imperative to consider the verification effort of these
policies and focus on reducing the complexity of the
proposed schemes.

 Architect efficient guard mechanisms that can guaran-
tee power and performance bounds in the power man-
agement policy. The possible solution space for guard
mechanisms can cover hardware, firmware, software
or a combination. It is also worth exploring guard
mechanisms that work without a priori knowledge of
underlying power management policies. Researchers
should consider designing “portable” guard mecha-
nisms that work for any platform and any successive
future generation of the same product.

* Develop better models and methodology to study
power management policies. We need to improve the
accuracy of analytical models.

* While this position paper advocates the need for guard
mechanisms for power management, we believe that
this problem is applicable to any dynamic management
scheme. We need to eventually think about guarded
computing.
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